Assignment 5 Due: Wednesday, Nov 30'", 2022 @ 5:00PM

CPSC 447/547 Introduction to Quantum Computing (Fall 2022)

1 Introduction

Welcome to Assignment 5 for CPSC 447/547 (Introduction to Quantum Computing). As usual,
collaboration is encouraged; if you discussed with anyone besides the course staff about the
assignment, please list their names in your submission.

Getting Started.

This assignment has only one part, the written portion. Typesetting your solutions to the
written portion is not mandatory but highly encouraged. See the instructor’s note on Ed for
details about Latex for quantum computing. To start,

* Create a folder for Assignment 5, e.g., A6/
* Download the starter files for this assignment to that folder from the course website:

— A5.pdf

— written.tex

* Write your solutions in written.tex

New Structure.

There are now two types of tasks, mandatory or optional. Only the mandatory tasks will be
counted towards your final grade for this assignment. Different from the mandatory tasks, the
optional tasks will be marked with “(x pts)”.

Submission.

Once you have completed and are ready to submit, upload to Gradescope (accessed through
Canvas): written.pdf. Late submissions (for up to two days) will receive a 50% penalty. Your
written solution will be graded manually by our course staff.


https://www.yongshanding.com/cpsc447-f22/#assignments
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WRITTEN PORTION
This portion of the assignment has a total of 100 points.

In this assignment, we will explore the basics of quantum error correction. In the first part
of the assignment, we will use the operator sum representation to understand some important
single-qubit quantum errors. Then in the second part, we introduce the stabilizer language to
describe quantum error correction codes.

2 Phase Flip Channel

Task 2.1 (24 pts)

Consider a single-qubit error model where the qubit experiences a phase flip, Z, with proba-
bility p, and stays the same otherwise. Specifically, if the input quantum state is p;;, then the
output quantum state is:

Pout = PZPinZ + 1= p)pin o))

(@) Suppose p;, = |lv)Xy| where |1//> = %(IO) +11)). What is pyy? Write your answer as a 2 x 2
density matrix, in terms of parameter p.

(b) The effect of an error on a quantum system can be mathematically represented by a quan-
tum channel, &(p), defined as

&(p) =Y ExpE.
k
where the Ej are called the Kraus operators satisfying the condition } E;E = 1. Give the
set of two Kraus operators {Ey, E;} describing the phase flip channel.

(c) Recall from lecture that one can model such error as an interaction of the quantum system
with an environment. The Kraus operators will then arise from tracing out the environment.
To see this, we construct a quantum circuit model for the phase flip channel as follows:

Pin Pour
penl/

Here, the top qubit is the input quantum system, and the bottom qubit is the environment.
Give the environment state p.;, such that the circuit is equivalent to the phase flip channel
on the top qubit p;,. Write p.,, as a density matrix in terms of the parameter p. (Hint: we
want to initialize p.,, such that a Z gate is performed on p;, with probability p.)

3 Dephasing Channel

Task 3.1 (24 pts)

Dephasing channel is an important physical process in quantum systems; it does not make
any transitions in the {|0), |1)} basis, but instead changes the relative phase between |0) and |1).
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In the operator sum representation, we consider for a single-qubit input state p, a dephasing
channel is defined as
&(p) = EypE} + E1 pE}
where Ey = L 0 E = 0 0
°Zlo vI-a]""'T o VAl
(a) Consider the input quantum state p;, = [+){(+|. Give the output quantum state p,,; =
&(pin). Write your answer as a 2 x 2 matrix in terms of A.

(b) It turns out we can write the two Kraus operators as a linear combination of the Pauli op-
erators, I and Z. In particular, find the coefficients, a, b, ¢,d, such that Ey = al + bZ and
E) = cI+dZ. Write your answers in terms of A.

(c) Use your solution to part (b) to rewrite the dephasing channel. Show that you can write
E(p) = EopE(‘; + ElpEI =pZpZ'+ (1 - p)p for some p. Write p in terms of A.

(d) (Optional) In real quantum systems, dephasing occurs continuously in time. Imagine r is
the rate of dephasing, so the dephasing parameter A = rAT <« 1 for some small interval of
time AT. Attime T = nAT, we can model the resulting quantum state as applying the de-
phasing channel n times: £”(p). Consider the input quantum state p;;, = |+){(+|. To model
a continuous dephasing process up to some constant time 7, we divide T into n — oo seg-
ments, each applied with & for infinitesimal duration AT. Give the output quantum state
at some fixed time T: pyu(T) = E™(pin), for n — co. Write your answer as a 2 x 2 matrix for
Pour intermsof r and T.

4 Erasure and Depolarizing Channel

Task 4.1 (* pts)

Recall from lecture, we call a quantum state p = % the maximally mixed state because it de-
scribes a quantum state at the origin of the Bloch sphere, which can be understood as a com-
pletely classical random state: |0) and |1) with equal probability.

Suppose a quantum channel maps any input quantum state to the maximally mixed state.
This defines the erasure channel:

I
which completely destroys the input qubit p;,.

(a) Consider a generic quantum state p = [ccl Z] . Give the density matrices for Xp X, YpY,ZpZ.
Write your answers in terms of a, b, ¢, d.

(b) Show that I = %(p + XpX+YpY + ZpZ) for any single-qubit density operator p.

(c) Give the set of Kraus operators {Ey, E1, E», E3} for the erasure channel.

(d) The depolarizing channel describes a random erasure process. Under this channel, a input
quantum state is erased to the maximally mixed state % with probability p and stays the
same otherwise:

I
Ep)= P+ 1-pp

3
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Give the set of Kraus operators {Ey, E1, E», E3} that describes the depolarizing channel.

5 7-Bit Hamming Code

Task 5.1 (> pts)

Recall from lecture, we define a classical linear code using a k x n generator matrix G and a
(n— k) x n parity check matrix H to encode k bits of information using » bits. The codewords
are defined as the column vectors X, = G’ , where 7 is the column vector representing a k-bit
integer, ranging from 0 to 2X — 1. Note that all arithmetic operations are done with modulo 2.
Errors can be detected by performing parity checks specified by the rows of a (n — k) x n matrix
H. A good parity check matrix satisfies the condition that HX = 0 for all codewords X.

For example, the Hamming code encodes k = 4 bits using n = 7 bits. The generator matrix G
is defined as

1 1
1 0
=1 1
1 1

S O = -
SO = O -
—_— O O

1
1
0
1

O =

The parity check matrix H is defined as

[1
H=]1 1 0 0 1 .
1 01 0 1 0 1]

[
[—
ek

—_— O
o

(a) Give the column vector for the codeword i = GT0. Here 0 = [0 00 0] T.
(b) Give the column vector for the codeword &3 = G'3. Here3=[0 0 1 1] .
(c) Give the column vector for the codeword %15 = GT15. Here 15=1 1 1 1] L
(d) Verify that HX;5 = 0.
(e) Consider an error € which occurs to one of the codewords, resulting in
y=%+é=[0 1 1 0 0 1 0]".
What are the results of the parity checks: Hy?

(f) Consider an error € which occurs to one of the codewords, resulting in y = X + é. Suppose

the results of the parity checks: Hy=[0 0 1] " If we assume that &is a single bit-flip, can
we locate the bit flip? If so, give é. If not, explain why.

6 7-Qubit Steane Code

Task 6.1 (52 pts)

The 7-qubit code (also known as Steane code) is constructed from the classical 7-bit Hamming
code C. The Steane code encodes 1 qubit of information using 7 qubits. In this question, we
will explore this construction and its properties.
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(a)

(b)

(©

(d)

(e)

For each codeword x of C, we define a 7-qubit quantum state |x). For example, if x =
[1 1 0011 0] T, then |x) = [1100110). For each row h of the parity check matrix H,
we define a Z-type stabilizer operator Sj;,. For example, if Hy, = [1 1 1100 0] , then
Sh=7207Z07Z07Z11®1®I. Show that|1100110) is a (+1)-eigenstate of all three stabilizers.
That is, S;,/1100110) = [1100110) for each Sj;,.

A single-qubit bit-flip error can be diagnosed by the above stabilizers. Consider a non-
codeword | y) =10110010). Show that | y) is a (—1)-eigenstate of at least one of the stabi-
lizers.

In order to also diagnose phase flip errors, we group the codewords into two subsets: E =
{|x) : x € C and x has even number of 1} and O = {|x) : x € C and x has odd number of 1}.
List the elements in E and O respectively.

We define the two codewords of the 7-qubit Steane code as follows:
1 1
0y, =—)_ Ix), IDp=—) 1%
x€E 8 xe0

We also define an additional set of stabilizers: For each row h of the parity check matrix
H, we define an X-type stabilizer operator S}. For example, if Hj, = [ 1110 0 0]
then §) = X® X® X® X®I® I®I. Show that §}|0), = |0); and S} [1); = |1}, for all three S),.

Consider an initial quantum state |1//> ; = al0); + BI1) 1. Due to some single-qubit bit-flip or
phase flip error, the quantum state results in |1//’ ). Suppose the stabilizer syndrome mea-
surements have the following outcome:

Sol") =|w'), S1lw') = [w'), Sa|lw") = [w'), Solw') = [w'), Si|w') = =|v'), S |v') = |v/').

What was the error?
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