Assignment 1 Due: Wednesday, Sep 20'", 2023 @ 5:00PM

CPSC 447/547 Introduction to Quantum Computing (Fall 2023)

1 Introduction

Welcome to the first assignment for CPSC 447/547 (Introduction to Quantum Computing). Be-
fore getting started, please take a moment to read the course syllabus and familiarize yourself
with the homework policies. Importantly, if you discussed with anyone besides the course staff
about the assignment, please list their names in your submission.

Getting Started.

This assignment covers the basics of quantum computation, focusing on the first two weeks
of classes. It has two parts, a written portion (52%) and a programming portion (48%). The tasks
that are marked by “(x pts)” are optional. Typesetting your solutions to the written portion is
not mandatory but highly encouraged. See the instructor’s note on Ed for details about Latex for
quantum computing. Some basic familiarity with Python and object-oriented programming is
required to complete the programming portion of this assignment. To start,

e Create a folder for Assignment 1, e.g., A1/
* Download the starter files for this assignment to that folder from the course website:

— written.tex

- Al.py
- requirement_A1l.py (Do not modify)

* Write your solutions in Al.py (for programming tasks) and in written.tex or on paper
(for written tasks).

* Debug and test your solution locally by running ‘ python3 Al.py’ on command line. This
will check for any violation of the requirements and run correctness tests. Feel free to add
more tests in Al.py. Do not hardcode your solutions for each public test cases.

Submission.

Once you have completed and are ready to submit, upload two files to Gradescope (accessed
through Canvas): written.pdf and Al.py. Gradescope will immediately show the results from
running the requirement test and public test cases. If your file fails the requirement_A1l.py
check, a 0 score will be assigned.

After the deadline, your written solution will be graded manually by our course staff; your
programming solution will be graded using our auto-grading script that contains private test
cases. Late submissions (for up to two days) will receive a 50% penalty.


https://www.yongshanding.com/cpsc447-f23/#assignments
https://www.yongshanding.com/cpsc447-f23/#assignments
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WRITTEN PORTION
This portion of the assignment has a total of 52 points.

2 Complex numbers

“Life is complex — it has both the real and imaginary parts.” — Unknown. In class, we saw that
a complex number « has a form: a = a; + ayi, where a;,a; € R and i = v—-1. In the following
tasks, we will learn to work with complex numbers.

Task 2.1 (6 pts)

Given a non-zero complex number a = a; +ay i, compute the following expressions. Please write
your answers by specifying the real and imaginary parts.

(@ =
(b) e—i(l

(©) 55(a—a®)

Task 2.2 (x pts)

Given a non-zero complex number a = a; +ay i, compute the following expressions. Please write
your answers by specifying the real and imaginary parts.

(@) |al?

(b) a?

Task 2.3 (6 pts)

Simplify the following expression. Please write your answers in the form of x + yi.

. . 3
(@) (sinf+icos%)

(b) Find all a such that a3 = 1.

3 State vectors

“Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.” — Asher
Peres. As we see in lectures, a quantum state for n qubits can be described as a vector in a 2"
dimensional Hilbert space. Mathematically, we use Dirac’s bra-ket notation:

lv)= > a;li)

Jjefo, 13"

where « j € C satisfy the normalization condition: }_; |a 2=1.



CPSC 447/547 (Fall 2023) Assignment 1

Task 3.1 (9 pts)

For the following complex vectors, are they valid quantum states? If a vector | x) is a valid quan-
tum state, what is its outer product, | x){x|? If not a valid quantum state, what is its inner product,
(x|x)?

_1+i 1-i
(a) |x)——\j§|0)+—\/§|1>

_ 1 —1i
(b) |x>—ﬁ|0>+ﬁ|1>

(© 1x) = e~ ™8]0y +e'"8]1)

Task 3.2 (x pts)

A single-qubit quantum state is a vector in the 2-dim Hilbert space. As we discussed in class,
a basis for this vector space is a set of vectors such that they span the entire vector space and
are linearly independent. An example of such basis is {|0), |1)} (which we call the computational
basis). Another example is {|+i),|-1)}, where |+i) = —=(|0) + i|1)) and |-} = —=(10) - i|1)). This
means that any single-qubit quantum state can be written as a linear combination of the basis
vectors. For each of the following quantum states:

e first compute the inner product (| + i), and

e then write |y) in the {|+i),|—i)} basis, i.e,, find a, f € C such that |y) = a|+i) + fI—i).
@ |v)=10)
(b) [y) = 55100 +11))

4 Spectral Theorem

Eigenvalues and eigenvectors are everywhere; they play a vital role in our understanding of
quantum computing. In class, we have seen that any normal operator A has a spectral decom-
position:
A= Z A1
J

where | j) are orthonormal eigenvectors of A and A are the corresponding eigenvalues.

Task 4.1 (16 pts)

(@) “Decomposition” — Find the orthonormal eigenvectors and their eigenvalues for the follow-
ing three matrices, namely Pauli matrices, and write down their spectral decompositions.

so[0 1] oo =] [t 0

ool Y7o A0 -1
(b) “Change of basis” — We normally write quantum states in their computational basis. For ex-
ample, if |1,l/> = «|0)+ B|1) we can write it down as a column vector Z . But the choice of ba-

sis is arbitrary, we can also choose to write the state vector in another basis, say {|+i),|—i)}.



CPSC 447/547 (Fall 2023) Assignment 1

!
a : « *
gl Here, we use the subscript “+i” to
+i
avoid ambiguity. Find the operator U such that it serves as a “change of basis” action from
the basis {|+i),|—i)} to the basis {|0),|1)}, i.e.,

This means that if [y) = a/|+i) + /|- i), we write

a,/

IBI

a

p

—

U

+i

Hint: think eigenvectors of o .

Task 4.2 (x pts)

(a) “Diagonalization” —Find an operator U such that it diagonalizes oy, i.e., Uo , U ~1 = Dwhere
D is a diagonal matrix where the diagonal entries are the eigenvalues of o,. Assume the
(real) diagonal entries are sorted in a decreasing order from top-left to bottom right.

(b) “Powers of operator” — as we saw in lectures, we can use the Spectral theorem to raise an
operator A to some power. Compute the fourth root(s) of the Pauli Y matrix, M = ai,/ 4 Le.,

find all possible M, such that M* =0,

5 Distinguishing quantum states

In class, we learned that we can distinguish two quantum states via physical experiments, such
as applying quantum gates and measurements.

Carol is an experimental physicist. One afternoon, she prepares two qubits (i.e., photon A
and photon B) in certain state |u/ Ap) and gives qubit A to Alice and qubit B to Bob. Out of
curiosity, Alice and Bob want to figure out if the qubits they receive are the same or different.
Since they only received one copy of the qubits each, they cannot simply measure multiple
copies of their qubits and reconstruct the distribution of the measurement outcomes. So they
turn to you for help.

Task 5.1 (15 pts)

In each of the following scenario, Carol has told you the state of the qubits; your job is to tell Al-
ice and Bob what quantum gates they can perform, so that a computational basis measurement
will distinguish the two states with certainty. If this is not possible, explain why. (Note: Alice
and Bob need to perform the exact same set of gates on their own qubit, if any. No interaction
between the two qubits is allowed.)

@ |wap)=I1+y®[-)
(b) |1~//AB> — (|0)+e‘iﬂ/4|l))

®

( |0>+e3iﬂ/4|1> )

vz V2
(C) |1/JAB> — (|0)+e\;i§75/4|1>) ® (eiﬂ/8|0>zfin/8ll>)
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Task 5.2 (* pts)

When qubits are entangled, your job again is to tell Alice and Bob what quantum gates they can
perform, so that a computational basis measurement outcome will be different for them. If this
is not possible, explain why.

(@) [yap) = 75100} +[11))

(b) |wap)= 500 @1+ +1-)®|-)

PROGRAMMING PORTION
This portion of the assignment has a total of 48 points.

6 Circuit Simulator

Please read the instructions for how to get started with the programming tasks in Section 1. The
goal of these tasks is to understand the basic data structures and operations used in quantum
circuits. In the end, we will have a working in-house quantum circuit simulator.

Before attempting the following tasks, you may want to read the starter code in Al. py care-
fully. We have provided a simple implementation of the Qubit class, the Gate class and the
QuantumCircuit class.

Task 6.1 (24 pts)

Implement the instruction set for the QuantumCircuit class. The implementation of the h gate
and the measure operation have been given. For example, in Al . py, you can find the definition
of the Hadamard gate:

def h(self, qubit):
# Define Gate by its name, kind (number of qubit), and matrix
HGate = Gate('h',1,1/np.sqrt(2)*np.array([[1,1],[1,-1]],dtype=complex))
self._append(HGate, [qubit], [])
return

Notice that the _append function takes three arguments: a Gate object, qubit indices for the
gate, and classical bit indices. For the purpose of this assignment, you can assume the last
argument is always []. For example, we can create a quantum circuit with a Hadamard gate on
qubit index 0 by running the following lines:

gc = QuantumCircuit(1l, 1)
qc.h(0)
Task 6.2 (24 pts)

Implement the tensorizeGate function. It takes as input a quantum gate (excluding mea-
surement) defined on one, two or three qubits, which is a subset of the QuantumRegister in
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the QuantumCircuit. The function returns the full unitary matrix (i.e., acting on all qubit in
QuantumRegister) for the input gate. Note that we assume the following ordering of qubits:
|qo d14z-..qn). For example, if the QuantumRegister has 3 qubits and the quantum gate cx
acts on qubits g2 (as control) and qO (as target), the function tensorizeGate will return a 23x23
matrix (as an np.array), with identity on the remaining qubit.

gc = QuantumCircuit(3, 3)

gc.cx(2, 0)

(op, g_arr, _) = gc.circuit[qc.pc]
tensorized = qc.tensorizeGate(op, q_arr)

The above lines of code will result in the following matrix:

tensorized =

[=Nel ool oNoN=)
—_ o O O O o oo
(=N eNell ==l
O H O OO OO O

[=NeleloNel ==
>N eoleololeoNeN =
=N eNeNel o=

coococococo ~

Task 6.3 (x pts)

Implement the simulate function. This function simulates the quantum circuit from scratch,
returning a final quantum state vector (as an np.array of complex type) if there are no mea-
surements in the circuit, or a sampled classical state vector (as annp . array of bool type) other-
wise. Please use the provided sampleBit function for random sampling. You may use/modify
the evolveOneStep function as a helper function for simulate. You may assume that all mea-
surements are the last few elements in circuit if any. For this assignment, you may also as-
sume that (computational basis) measurement (if present) will be performed to all qubits.
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