
Assignment 2 Due: Wednesday, Oct 4th , 2023 @ 5:00PM

CPSC 447/547 Introduction to Quantum Computing (Fall 2023)

1 Introduction

Welcome to Assignment 2 for CPSC 447/547 (Introduction to Quantum Computing). As usual,
collaboration is encouraged; if you discussed with anyone besides the course staff about the
assignment, please list their names in your submission.

Getting Started.

This assignment has two parts, a written portion and a programming portion. The tasks that
are marked by “(⋆ pts)” are optional. Typesetting your solutions to the written portion is not
mandatory but highly encouraged. See the instructor’s note on Ed for details about Latex for
quantum computing. Some basic familiarity with Python and object-oriented programming is
required to complete the programming portion of this assignment. No Python packages, except
for math and numpy, are allowed. To start,

• Create a folder for Assignment 2, e.g., A2/

• Download the starter files for this assignment to that folder from the course website:

– written.tex

– A2.py

– requirement_A2.py (Do not modify)

• Write your solutions in A2.py (for programming tasks) and in written.tex or on paper
(for written tasks).

• Debug and test your solution locally by running ‘python3 A2.py’ on command line. This
will check for any violation of the requirements and run correctness tests. Feel free to add
more tests in A2.py. Do not hardcode your solutions for each public test cases.

Submission. Once you have completed and are ready to submit, upload two files to Gradescope

(accessed through Canvas): written.pdf and A2.py. Gradescope will immediately show the
results from running the requirement test and public test cases. If your file fails the tests in
requirement_A2.py, a 0 score will be assigned.

After the deadline, your written solution will be graded manually by our course staff; your
programming solution will be graded using our auto-grading script that contains private test
cases. Late submissions (for up to two days) will receive a 50% penalty.

1

https://www.yongshanding.com/cpsc447-f22/#assignments

CPSC 447/547 (Fall 2023) Assignment 2

WRITTEN PORTION

This portion of the assignment has a total of 49 points.

2 Measurements

Recall from lecture, a quantum measurement, represented by an observable O, will probablisti-
cally collapse a quantum state to one of the eigen-basis states of O. Specifically, by the spectral
theorem, we can write O = ∑

i λi |ei 〉〈ei | and associate the measurement event with a random
variable x, where x =λi if the measurement outcome is its associated eigen-basis |ei 〉.

Task 2.1 (9 pts)

In this task, we perform measurements by the observable σx = (+1) |+〉〈+|+ (−1) |−〉〈−|, where
|±〉 = 1p

2
(|0〉± |1〉). For each of the following quantum states, first write it in the form of |x〉 =

α|+〉 +β|−〉, for some complex numbers α,β. Or if |x〉 is a two-qubit state, then we want to
measure the first qubit, so write the state in the form of |x〉 = α|+〉 ⊗ ∣∣ψ+

〉+β|−〉 ⊗ ∣∣ψ−
〉

, for
some single-qubit states

∣∣ψ+
〉

,
∣∣ψ−

〉
. Then answer what is the probability that the measurement

outcome is |+〉?
(a) |x〉 = |0〉
(b) |x〉 = 1+i

2 |0〉+ 1−i
2 |1〉

(c) |x〉 = 1p
2
|00〉+ 1p

2
|11〉

Task 2.2 (12 pts)

Suppose we are given two qubits, A and B , in the following state:
∣∣ψAB

〉 = 1p
3
|00〉 + 1p

3
|01〉 +

1p
3
|10〉. For each of the following measurement scenarios (a-c), calculate the expectation value

when measuring
∣∣ψAB

〉
.

(a) Only measure qubit A in the x basis, that is, with observable O =σx ⊗ I .

(b) Only measure qubit B in the x basis, that is, with observable O = I ⊗σx .

(c) Measure both qubits in the x basis, that is, with observable O =σx ⊗σx .

(d) Following part (a), if the measurement outcome is |+〉, what is the state of qubit B after the
measurement?

Task 2.3 (⋆ pts)

Suppose we are given a qubit and a promise that the state of the qubit
∣∣ψ〉

is either |+〉 or |−〉.
In this question, we will learn how to figure out which state the qubit is in without directly
measuring

∣∣ψ〉
. The key here is to use an ancillary qubit and two-qubit gates. Let’s take a look

at the following quantum circuit:

|0〉 H • H∣∣ψ〉
?

2

CPSC 447/547 (Fall 2023) Assignment 2

(a) Suppose
∣∣ψ〉 = |+〉, then what is the probability that the top qubit measures to be |0〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(b) Suppose
∣∣ψ〉 = |+〉, then what is the probability that the top qubit measures to be |1〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(c) Suppose
∣∣ψ〉 = |−〉, then what is the probability that the top qubit measures to be |0〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(d) Suppose
∣∣ψ〉 = |−〉, then what is the probability that the top qubit measures to be |1〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(e) Suppose
∣∣ψ〉=p

1−ϵ|+〉+p
ϵ|−〉 for some small ϵ, i.e., a slight perturbation from |+〉. Then

what is the probability of measuring |0〉 for the top qubit?

3 Sharing Entanglement

Entanglement is one of the most powerful yet elusive properties in quantum computing. In
lectures, we have studied entanglement between two parties, such as Alice and Bob. We saw
how to use entanglement to accomplish something like quantum teleportation. The concept
of entanglement can be generalized to three parties or more. In this question, we will explore
what does it mean for more qubits to be entangled.

Task 3.1 (6 pts)

Suppose Alice, Bob, and Carol each holds on to one of the three qubits in the quantum state∣∣ψABC
〉

, respectively. For each of the following scenarios of
∣∣ψABC

〉
, first answer whether or not∣∣ψABC

〉
is entangled (i.e., is it not possible to write

∣∣ψABC
〉 = ∣∣ψA

〉⊗ ∣∣ψB
〉⊗ ∣∣ψC

〉
), then write

down what is the joint state of Alice and Bob’s qubits after Carol measured her qubit (condi-
tioned on her measurement outcome). Finally, does Carol’s measurement breaks the entangle-
ment between Alice and Bob? Answer whether Alice’s qubit and Bob’s qubit are still entangled,
if not, write down the product form

∣∣ψA
〉⊗ ∣∣ψB

〉
.

(a)
∣∣ψABC

〉= 1p
2
|000〉+ 1p

2
|111〉: “GHZ state”

(b)
∣∣ψABC

〉= 1p
3
|001〉+ 1p

3
|010〉+ 1p

3
|100〉: “W state”

Task 3.2 (10 pts)

Suppose Alice lives in Chicago, Bob lives in Los Angeles, and Carol lives in New Haven. They can
communicate by classical channels (such as sending classical bits via phone calls or radio sig-
nals) as well as quantum channels (such as sending qubits implemented by photons via optical
fibers). One day, all quantum channels broke down... So they have to resort to using quantum
teleportation for communicating qubits. Fortunately, right before the breakdown, Alice pre-
pared two EPR pairs; she sent one of the qubit in the first EPR pair to Bob and one of the qubit
in the second EPR pair to Carol. However, Bob and Carol do not share entangled qubits with
each other before the breakdown. In this case, are we able to make an EPR pair shared between
Bob and Carol despite having no quantum channel between them?

3

CPSC 447/547 (Fall 2023) Assignment 2

(a) Describe how you would accomplish this in fewer than five sentences.

(b) Complete the quantum circuit below to implement your algorithm. Note that no multi-
qubit gates are allowed across different people’s qubits after the breakdown point. Some
qubits are initialized for each person; you do not have to use all of them.

|0〉
Breakdown

|0〉
Bob |0〉

|0〉 H •

|0〉
EPR pair

|0〉
Alice |0〉

|0〉
|0〉 H •

|0〉
EPR pair

Carol
|0〉
|0〉
|0〉

4 Gate Equivalences

Task 4.1 (12 pts)

For the following sequences of gates, give their single gate equivalents. Write your answers using
gates from the following set, with an appropriate phase factor:

{I , X ,Y , Z , H ,S,S†,T,T †}.

For example, −Z or e iπ/16Y are valid answers. For reference, we list the gate definitions here:

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H = 1p

2

[
1 1
1 −1

]
,

S =
[

1 0
0 i

]
,S† =

[
1 0
0 −i

]
,T =

[
1 0
0 e iπ/4

]
,T † =

[
1 0
0 e−iπ/4

]
(a) X Y Z

(b) H Z H Z

(c) T X T †X

(d) T Z T †Z

(e) SX S†

(f) S†(T H)Z (T H)†

4

CPSC 447/547 (Fall 2023) Assignment 2

Task 4.2 (⋆ pts)

For the following scenarios of U , solve for a V such that the circuit equality holds. Write your
answers using gates from the following set, with an appropriate phase factor:

{I , X ,Y , Z , H ,S,S†,T,T †,C NOT0,1,C NOT1,0,SW AP0,1}.

Note that at most one gate per qubit is allowed. For example, −(Z0X1) is a valid answer. To
avoid ambiguity, we use subscripts to indicate the qubit that the gate acts on. For example,
Z0(HS)1 = (Z ⊗H)(I ⊗S) and C NOT0,1 has a control qubit q0 and a target qubit q1.

q0
U

•
q1

=
q0 •

Vq1

(a) U = X0I1

(b) U = I0X1

(c) U = X0Z1

(d) U = (Z X)0I1

(e) U = SW AP0,1

PROGRAMMING PORTION

This portion of the assignment has a total of 51 points.

5 Quantum Compiler

The programming portion of this assignment is to implement a mini quantum compiler! In lec-
tures, we discussed one of the topics in quantum compilation, namely circuit synthesis (which
deals with decomposing an arbitrary multi-qubit unitary into a sequence of one- or two-qubit
quantum gates). The role of a quantum compiler goes beyond circuit synthesis; in this task, we
will implement register allocation, which is another important task for the compiler.

What is a register? In our context, a quantum register is a list of qubits used by a quantum
circuit. When executing the quantum circuit on an actual quantum computer, we need to map
each qubit in the quantum register to a physical qubit in the quantum hardware.

Let’s use an example to illustrate. Suppose a quantum computer (backend) physically has
5 qubits, labeled q0, q1, . . . , q4. We want to run a quantum circuit on 4 qubits. Now we have a
choice to make: we can run the circuit on {q0, q1, q2, q3} or on {q0, q1, q2, q4}, etc. Typically, we
consider many constraints (such as quality of qubits, fidelity of gates, connectivity, etc) such
that we would prefer one mapping over the other. In this question, we will simplify the problem
by ignoring these constraints – without loss of generality, we assume to always prefer using the
lower-indexed qubits. Thus, in the example earlier, the mapping {q0, q1, q2, q3} wins.

Consider a quantum circuit as shown below. It is implemented by several function calls,
where quantum gates are contained in synthetic_algo(), moduleA(), and moduleB(). The
circuit is drawn with dash lines to indicate the module boundaries.

5

CPSC 447/547 (Fall 2023) Assignment 2

|0〉 H •
moduleA([0,1])

T †

|0〉 H • • T •

|0〉 H •
moduleA([2,3])

T †

|0〉 H • • T •

Ancilla |0〉
Ancilla |0〉 •

Ancilla |0〉 moduleB([1])

Ancilla |0〉 •
moduleB([1])

def moduleB(q_arr):
...

def moduleA(q_arr):
...
moduleB([1])

def synthetic_algo(n):
...
moduleA([0,1])
moduleA([2,3])

synthetic_algo(4)

Figure 1: An example quantum circuit for synthetic_algo(4). Here dashed lines are boundaries of a module.
The call structure (i.e., the relationship between modules) is shown on the right. Ancillary qubits used by moduleA
and moduleB are indicated as “Ancilla”.

Task 5.1 (12 pts)

A module needs to take a subset of the qubits in QuantumRegister as input. Therefore, we
will implement the following two functions in the QuantumRegister class (and similarly for the
ClassicalRegister class):

• select(self, ids): it takes a list of indices (ids) and return a new QuantumRegister
which includes only the qubits indexed by ids. If ids is empty, raise an Exception(’ids
must be non-empty!’). Hint: please read carefully the new __init__ definition for the
QuantumRegister for information about different ways to initialize a quantum register.

For example, if a register contains a qubit array [0,2,4,5], then select on ids = [1,3]
is expected to return a quantum register object containing qubits [2,5].

• __add__(self, other): it concatenates two quantum registers. We assume reg1 + reg2
results in a larger array containing qubits in reg1 followed by qubits in reg2. You may as-
sume that qubit indices in reg1 and reg2 do not overlap. Hint: make sure the returned
QuantumRegister has the updated values for size, array, and new_q.

For example, if the qubit array of self is [0,3] and that of other is [1,4], then __add__
is expected to return a register containing a qubit array [0,3,1,4].

Note: Throughout this section, we assume that all QuantumCircuits are initialized with the
same size for QuantumRegister and ClassicalRegister, that is QuantumCircuit(n,n) for
some n. new_q is a list of indicators for whether the qubits in this register are newly initialized,
or referenced from existing registers in an external circuit. This is useful later when we need to

6

CPSC 447/547 (Fall 2023) Assignment 2

keep track of the allocated qubits. For ClassicalRegister, you do not need to keep track of
an analogous new_q.

Task 5.2 (6 pts)

In the QuantumCircuit class, implement the allocate(self, ids, new) function for using
part of the qubits in the existing quantum circuits when constructing a new quantum circuit on
top of it. It returns a tuple of QuantumRegister and ClassicalRegister.

ids is a list of indices of qubits from self.qubits to be included in the new register and new
is a (non-negative) integer specifying the number of new qubits in addition to the existing ones.
That is, the new register should contain the selected qubits from self.qubits followed by
some new qubits. Similarly, new classical bits should be allocated for the ClassicalRegister.
Hint: you might want to use the select function you defined in Task 5.1.

Task 5.3 (8 pts)

In Backend, implement the alloc(self, n) function for assigning available qubits from the
backend, where n is a (non-negative) integer for the number of new qubits to allocate. If the
backend allows this operation, update the state of the Backend instance, including its num_q,
in_use and all_qubits, and return a list of indices (of length n) for those new qubits; other-
wise raise an Exception following the explanation below.

Backend is a class containing information about the quantum hardware, including num-
ber of qubits (num_q), number of qubits that have already been allocated (in_use), a list of all
Qubits (all_qubits), a name (label), and an indicator for whether the backend has a variable
| infinite | idealized size (variable==True) or a fixed | finite | realistic size (variable==False).

We assume to allocate lower-indexed qubits first. So, if backend is finite and (in_use + n)
exceeds num_q, raise an Exception(’Allocation error: not enough qubits!’), other-
wise update the status of the backend and return the list of indices.

Task 5.4 (10 pts)

Implement the quantum circuit of Figure 1 in A2.py, by filling in the functions synthetic_algo,
moduleA and moduleB, as specified in Figure 1. For this task, you may assume that n = 4 for
synthetic_algo(n). The synthetic_algo function will return a QuantumCircuit object in
the end.

Task 5.5 (15 pts)

Implement the compile_fully_connected(self, backend, mapping) function as part of
the QuantumCircuit class, where backend is the intended hardware backend (assumed to be
fully connected, i.e., a complete graph) to run the circuit and mapping is an (optional) exist-
ing qubit mapping. A mapping is a Dictionary of key-value pairs, where the key is the index
of a qubit in the quantum register of the circuit and the value is the index of the qubit in the
backend. Because of our assumptions, this same mapping is also valid for indexing classical
bits. The compile function should return the flattened and mapped circuit as a list of gates –
“flattened” means that the returned list should contain only quantum gates (i.e., without sub-
circuits) and “mapped” means that the qubits in the circuit are indices to the backend. Raise

7

CPSC 447/547 (Fall 2023) Assignment 2

an Exception(’Backend too small!’) if the number of qubits needed in the circuit exceeds
that of the backend.

The way one can implement this quantum circuit compiler is highly similar to implement-
ing a compiler for a classical circuit. In Task 5.5.1, you will first allocate qubits for the circuit.
Then in Task 5.5.2, you will recursively compile the circuits. More details can be found in the
instructions in the starter codes.

For reference, the expected output of compile_fully_connected() for the quantum circuit
in Task 5.4 is the following:

======<CPSC 447/547 QASM>======
Qreg: 8, Creg: 8
h qreg0 ,
h qreg1 ,
h qreg2 ,
h qreg3 ,
cx qreg0 qreg4 ,
cx qreg1 qreg0 ,
cx qreg1 qreg4 ,
tdg qreg0 ,
t qreg1 ,
cx qreg1 qreg5 ,
cx qreg5 qreg1 ,
cx qreg2 qreg6 ,
cx qreg3 qreg2 ,
cx qreg3 qreg6 ,
tdg qreg2 ,
t qreg3 ,
cx qreg3 qreg7 ,
cx qreg7 qreg3 ,
===============================

Task 5.6 (⋆ pts)

Implement the compile(self, backend, mapping) function as in the previous task, but this
time without assuming that the intended hardware backend is fully connected. Note that you
can still assume that the backend is connected (that is no disconnected components). This
means we need to update our definition of Backend to include information, and then imple-
ment an algorithm to resolve the connectivity constraints:

• In Backend, add an input argument adj_matrix, which is the adjacency matrix describing
the connectivity graph of qubits in the backend. Thus, for a backend of num_q qubits,
adj_matrix is a size num_q×num_q matrix with type np.ndarray. Lastly, do not forget to
initialize a field for adj_matrix. Note: an infinite/variable backend can be assumed to be
fully connected, in which case adj_matrix can be set to None.

• In additional to all requirements in Task 5.5, implement an algorithm, in compile(self,
backend, mapping), that replaces any two-qubit gates (e.g., cx(0,3) on the backend
shown in Figure 2) acting on qubits that are not directly connected by the following se-
quence of gates:

8

CPSC 447/547 (Fall 2023) Assignment 2

0 1 2 3
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

Figure 2: An example backend of 4 qubits (left) and its adjacency matrix (right). Here cx(0,3) cannot be per-
formed directly, because qubit 0 and qubit 3 are not connected.

1. Swapping one of the qubit to be next to the other qubit. For instance, apply swap(0,1),
then swap(1,2).

2. Apply the two qubit gates on the connected qubits. In our example, cx(2,3).

3. Finally, swapping the qubit back to its original location. For instance, apply swap(1,2),
then swap(0,1).

Therefore, compile function will return a list of gates, where every two-qubit gate acts
only on a pair of qubits that are connected. Note that, since swap gate is not part of the
instruction set in QuantumCircuit, we need to use the cx gates to implement it. You can
assume that the original program does not use the three-qubit gate, toffoli, from the
instruction set.

9

	Introduction
	Measurements
	(9 pts)
	(12 pts)
	(pts)

	Sharing Entanglement
	(6 pts)
	(10 pts)

	Gate Equivalences
	(12 pts)
	(pts)

	Quantum Compiler
	(12 pts)
	(6 pts)
	(8 pts)
	(10 pts)
	(15 pts)
	(pts)

