
Assignment 3 Due: Wednesday, Nov 1st , 2023 @ 5:00PM

CPSC 447/547 Introduction to Quantum Computing (Fall 2023)

1 Introduction

Welcome to Assignment 3 for CPSC 447/547 (Introduction to Quantum Computing). As usual,
collaboration is encouraged; if you discussed with anyone besides the course staff about the
assignment, please list their names in your submission.

Getting Started.

This assignment has two parts, a written portion and a programming portion. The tasks that
are marked by “(⋆ pts)” are optional. Typesetting your solutions to the written portion is not
mandatory but highly encouraged. See the instructor’s note on Ed for details about Latex for
quantum computing. Some basic familiarity with Python and object-oriented programming is
required to complete the programming portion of this assignment. No Python packages, except
for math and numpy, are allowed. To start,

• Create a folder for Assignment 3, e.g., A3/

• Download the starter files for this assignment to that folder from the course website:

– written.tex

– A3.py

– requirement_A3.py (Do not modify)

• Write your solutions in A3.py (for programming tasks) and in written.tex or on paper
(for written tasks).

• Debug and test your solution locally by running ‘python3 A3.py’ on command line. This
will check for any violation of the requirements and run correctness tests. Feel free to add
more tests in A3.py. Do not hardcode your solutions for each public test cases.

Submission. Once you have completed and are ready to submit, upload two files to Gradescope

(accessed through Canvas): written.pdf and A3.py. Gradescope will immediately show the
results from running the requirement test and public test cases. If your file fails the tests in
requirement_A3.py, a 0 score will be assigned.

After the deadline, your written solution will be graded manually by our course staff; your
programming solution will be graded using our auto-grading script that contains private test
cases. Late submissions (for up to two days) will receive a 50% penalty.

1

https://www.yongshanding.com/cpsc447-f22/#assignments

CPSC 447/547 (Fall 2023) Assignment 3

WRITTEN PORTION

This portion of the assignment has a total of 65 points.
Any tasks marked with (⋆ pts) are optional.

2 Quantum Oracles

Task 2.1 (10 pts)

Recall from lecture, we have defined the phase oracle for a function f : {0,1}n → {0,1} as follows:

O±
f |x〉 = (−1) f (x)|x〉.

Suppose we have an oracle to the following function f : {0,1}2 → {0,1}:

f (x) =
{

1, if x = 01

0, otherwise

Given an input quantum state
∣∣ψ〉 = 1p

3
(|00〉+ |01〉+ |10〉). What is its state after applying the

phase oracle to
∣∣ψ〉

. That is, compute O±
f

∣∣ψ〉
.

Task 2.2 (10 pts)

What is the unitary matrix for the O±
f from the previous question? (Hint: O±

f can be viewed as a

reflection operator.)

Task 2.3 (⋆ pts)

Give a circuit implementation of the O±
f from the previous questions.

Task 2.4 (⋆ pts)

Suppose now we are given an oracle to the following function f : {0,1}2 → {0,1}:

f (x) =
{

1, if x = 01 or 00

0, otherwise

Answer the previous three questions. That is, compute O±
f

∣∣ψ〉
, write down the unitary matrix

for O±
f , and give a quantum circuit for O±

f .

3 Simon’s Algorithm

Task 3.1 (25 pts)

In Simon’s algorithm, we are given a “periodic”, two-to-one function and want to find its period.
Let’s analyze how this algorithm works for a particular function f : {0,1}3 → {0,1}2, where f (x +
a) = f (x) for some unknown period a. Importantly, here addition (+) is a bit-wise addition
modulo 2. For example, 010+011 = 001. Its truth table looks like this in Table 1.

2

CPSC 447/547 (Fall 2023) Assignment 3

Input Output

000 f (000) = 01
001 f (001) = 10
010 f (010) = 10
011 f (011) = 01
100 f (100) = 11
101 f (101) = 00
110 f (110) = 00
111 f (111) = 11

Table 1: Truth table of function f .

We have colored the output so that you can visually inspect the period. In Simon’s algorithm,
we use the following quantum circuit to find the period:

|0〉 H

a⃝

O f

b⃝ c⃝

H

d⃝

|0〉 H H

|0〉 H H

|0〉

|0〉

We have labeled four important time steps in the quantum circuit. Answer the following
questions.

(a) Visually inspecting the whole truth table in Table 1. What is the period a, such that f (x+a) =
f (x) for all inputs x?

(b) What is the quantum state at time step a⃝, i.e., after H⊗3?

(c) What is the quantum state at time step b⃝, i.e., after the oracle O f ?

(d) What is the quantum state at time step c⃝, i.e., after measuring the bottom two qubits, given
that the measurement outcome is 01? Please write your answer in the form of (α000|000〉+
α001|001〉+α010|010〉+α011|011〉+α100|100〉+α101|101〉+α110|110〉+α111|111〉)⊗|01〉 with the
appropriate values forαi . Here we assume top qubit in the circuit is the most-significant bit
in the state, that is |x〉 = |x2x1x0〉, x =∑

s xs2s , and |x2〉 is the top qubit.

(e) What are the possible measurement outcomes at time step d⃝, assuming the measurement
outcome of 01 from (d)? Write down all possible outcomes and their associated probabili-
ties.

Task 3.2 (⋆ pts)

Following the previous question,

3

CPSC 447/547 (Fall 2023) Assignment 3

1. If the measurement outcome at time step d⃝ is 100, what do we know about the period a?
In other words, what are the possible values of a that are consistent with this measurement
outcome?

2. If we repeat Simon’s algorithm and obtain another measurement outcome 111 at time step
d⃝, what do we know about the period now? In other words, what are the possible values of
a that are consistent with both the first measurement outcome 100 and the second mea-
surement outcome 111?

4 Quantum Fourier Transform

Task 4.1 (20 pts)

Quantum Fourier Transform (QFT) is a very useful primitive in quantum algorithms. In this
question, we will explore quantum computer’s number format in the computational basis and
in the Fourier basis, and discover QFT’s role in this.

The standard binary representation of a non-negative integer j ∈ {0,1,2, . . . ,2n −1} is defined
by a length-n bitstring: jn−1 jn−2 · · · j1 j0 such that j = ∑n−1

s=0 js2s ,, where js ∈ {0,1}. Let’s use the
number j to index the amplitude of an n-qubit quantum state:

∣∣ψ〉= 2n−1∑
j=0

α j
∣∣ jn−1 jn−2 · · · j1 j0

〉≡ 2n−1∑
j=0

α j
∣∣ j

〉
,

for complex amplitudes satisfying
∑

j |α j |2 = 1.
Quantum Fourier Transform (QFT) maps one quantum state to another as follows:

∣∣ψ〉 QF T−−−→ ∣∣φ〉= F2n
∣∣ψ〉≡ 2n−1∑

k=0
βk |kn−1kn−2 · · ·k1k0〉,

where βk = 1p
2n

∑2n−1
j=0 w j kα j and w = e i 2π/2n

.

(a) Suppose we only consider two numbers {0,1}, that is, n = 1. What is w? And what is the
unitary matrix of F2?

(b) In the computational basis, we define two quantum states as the basis states, |0〉, |1〉. We
can also represent the two numbers in the Fourier basis, |̃0〉 = F2|0〉, |̃1〉 = F2|1〉. Write down
the Fourier basis states in the computational basis. That is, write down |̃0〉, |̃1〉 in the form of
α|0〉+β|1〉 for some values of α,β.

(c) Suppose we consider four numbers {0,1,2,3}, that is, n = 2. What is w? And what is the
unitary matrix of F4?

(d) Since F4 is unitary, it should be invertible. What is the matrix for the inverse, F−1
4 ?

Task 4.2 (⋆ pts)

Continuing from the previous question,

4

CPSC 447/547 (Fall 2023) Assignment 3

(a) We can define the computational basis, |0〉 = |00〉, |1〉 = |01〉, |2〉 = |10〉, |3〉 = |11〉. We also can
use Fourier transform to represent the four numbers in the Fourier basis:

{|̃0〉, |̃1〉, |̃2〉, |̃3〉}.
Write down the four quantum states: |̃0〉 = F4|0〉, |̃1〉 = F4|1〉, |̃2〉 = F4|2〉, |̃3〉 = F4|3〉.

(b) For the following tasks, let’s consider n = 3. We can count numbers from 0 to 7 in the com-
putational basis or the Fourier basis. In the computational basis, a number j is represented
by the standard binary format:

∣∣ j
〉= ∣∣ j2 j1 j0

〉
. In the Fourier basis, a number j is represented

by ∣̃∣ j
〉= F8

∣∣ j
〉= 1p

8

7∑
k=0

w j k |k〉 = 1p
8

∑
k0,k1,k2∈{0,1}

w j k |k2k1k0〉.

Show that F8
∣∣ j

〉
is unentangled, by writing the quantum state as a product state:

(
α2|0〉+β2|1〉

)⊗(
α1|0〉+β1|1〉

)⊗ (
α0|0〉+β0|1〉

)
. Write your answers in terms of w .

(c) Complete the following table. Write your answers in terms of w .

Integer 0 1 2 3 4 5 6 7

Computational basis (
∣∣ j

〉
) |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

Fourier basis (F8
∣∣ j

〉
)

Table 2: Counting numbers in the computational basis and the Fourier basis.

PROGRAMMING PORTION

This portion of the assignment has a total of 35 points.
Important: This portion is optional for CPSC 547 students.

5 Oracles

In lectures, we discussed quantum algorithms using quantum oracles. The power of quantum
oracles lies in computing Boolean functions in superposition. For example, for a Boolean func-
tion f : {0,1}n → {0,1}m , we have the (bit) oracle:∑

j
α j

∣∣ j
〉|0〉 O f−−→∑

j
α j

∣∣ j
〉∣∣ f (j)

〉
.

In the following tasks, we will explore how to use quantum gates to implement quantum
oracles. Let’s take a look at an example. Suppose the function is the AND logic gate: f (x0, x1) =
x0 ∧x1. We can use a Toffoli gate to implement AND reversibly:

|x0〉 • |x0〉
|x1〉 • |x1〉
|0〉 |x0 ∧x1〉

The implementation can be found in the AND(qc, in_qubit_1, in_qubit_2, out_qubit)
function. The oracle transforms |x0x10〉 to |x0x1(x0 ∧x1)〉, for all x0, x1 ∈ {0,1}. We can verify

5

CPSC 447/547 (Fall 2023) Assignment 3

the correctness of this implementation with some test cases. For example, for input |110〉, we
should get |111〉; for input 1p

2
|010〉+ 1p

2
|110〉, we should get 1p

2
|010〉+ 1p

2
|111〉.

Task 5.1 (10 pts)

Implement the logical-OR oracle in the function

OR(qc, in_qubit_1, in_qubit_2, out_qubit)

using gates in the QuantumCircuit class. Here, in_qubit_1, in_qubit_2, out_qubit are
qubit indices. You can assume the output qubit is always initialized to |0〉. In particular,

OR(qc,0,1,2) transforms |x0x10〉 to |x0x1(x0 ∨x1)〉.
Note that we will test values in all qubits, meaning that if you (temporarily) changed the input
qubits, they need to be returned to their original value by the end of the function. Some example
tests:

• If the quantum state is initialized to |010〉 in qc, then OR(qc,0,1,2) should transform the
quantum state to |011〉.

• If the quantum state is initialized to 1p
2
|010〉+ 1p

2
|000〉 in qc, then OR(qc,2,1,0) should

transform the quantum state to 1p
2
|110〉+ 1p

2
|000〉.

Task 5.2 (5 pts)

Implement the n-bit logical-AND oracle in the function

nAND(qc, in_qubits, out_qubit, ancilla)

using gates in the QuantumCircuit class. Here, in_qubits, out_qubit are qubit indices.
ancilla has the same length as in_qubits, initialized to |0n〉. You can assume the output
qubit is always initialized to |0〉 and n ≥ 2. For example,

nAND(qc,[0,1,2,3],4,ancilla) transforms |x0x1x2x30〉 to |x0x1x2x3(x0 ∧x1 ∧x2 ∧x3)〉.
Notice that ancilla is omitted for simplicity. You do not have to use the qubits in ancilla, but
if you do, they must be returned to the |0n〉 state. You may use AND() inside nAND().

Some example tests:

• If the quantum state is initialized to |0100〉 in qc, then nAND(qc,[0,1,2],3) should trans-
form the quantum state to |0100〉.

• If the quantum state is initialized to 1p
2
|1110〉+ 1p

2
|1010〉 in qc, then nAND(qc,[0,1,2],3)

should transform the quantum state to 1p
2
|1111〉+ 1p

2
|1010〉.

Task 5.3 (5 pts)

Implement the n-bit logical-OR oracle in the function

nOR(qc, in_qubits, out_qubit, ancilla)

6

CPSC 447/547 (Fall 2023) Assignment 3

using gates in the QuantumCircuit class. Here, in_qubits, out_qubit are qubit indices.
ancilla has the same length as in_qubits, initialized to |0n〉. For example,

nOR(qc,[0,1,2,3],4,ancilla) transforms |x0x1x2x30〉 to |x0x1x2x3(x0 ∨x1 ∨x2 ∨x3)〉.
Notice that the ancilla is omitted here for simplicity. You can assume the output qubit is
always initialized to |0〉 and n ≥ 2. You do not have to use the qubits in ancilla, but if you do,
they must be returned to the |0n〉 state. You may use OR() inside nOR().

Some example tests for nOR(qc,[0,1,2],3,ancilla):

• If the quantum state is initialized to |0100〉 in qc, then it should be transformed to |0101〉.
Again, ancilla is omitted here for simplicity.

• If the quantum state is initialized to 1p
2
|1110〉 + 1p

2
|1010〉 in qc, then it should be trans-

formed to 1p
2
|1111〉+ 1p

2
|1011〉.

Task 5.4 (15 pts)

Implement the Majority oracle in the function

MAJ(qc,in_qubit_1,in_qubit_2,in_qubit_3,out_qubit)

using gates in the QuantumCircuit class. Here,

MAJ(qc,0,1,2,3) transforms |x0x1x20〉 to |x0x1x2((x0 · x1)⊕ (x0 · x2)⊕ (x1 · x2))〉.
You can assume the output qubit is always initialized to |0〉.

Some example tests for MAJ(qc,0,1,2,3):

• If the quantum state is initialized to |0100〉 in qc, then it should be transformed to |0100〉.
• If the quantum state is initialized to 1p

2
|1010〉 + 1p

2
|1000〉 in qc, then it should be trans-

formed to 1p
2
|1011〉+ 1p

2
|1000〉.

7

	Introduction
	Quantum Oracles
	(10 pts)
	(10 pts)
	(pts)
	(pts)

	Simon's Algorithm
	(25 pts)
	(pts)

	Quantum Fourier Transform
	(20 pts)
	(pts)

	Oracles
	(10 pts)
	(5 pts)
	(5 pts)
	(15 pts)

