
Assignment 5 Due: Wednesday, Nov 29th , 2023 @ 5:00PM

CPSC 447/547 Introduction to Quantum Computing (Fall 2023)

1 Introduction

Welcome to Assignment 5 for CPSC 447/547 (Introduction to Quantum Computing). As usual,
collaboration is encouraged; if you discussed with anyone besides the course staff about the
assignment, please list their names in your submission.

Getting Started.

This assignment has two parts, a written portion and a programming portion. The tasks that
are marked by “(⋆ pts)” are optional. Typesetting your solutions to the written portion is not
mandatory but highly encouraged. See the instructor’s note on Ed for details about Latex for
quantum computing. Some basic familiarity with Python and object-oriented programming is
required to complete the programming portion of this assignment. No Python packages, except
for math and numpy, are allowed. To start,

• Create a folder for Assignment 5, e.g., A5/

• Download the starter files for this assignment to that folder from the course website:

– written.tex

– A5.py

– requirement_A5.py (Do not modify)

• Write your solutions in A5.py (for programming tasks) and in written.tex or on paper
(for written tasks).

• Debug and test your solution locally by running ‘python3 A5.py’ on command line. This
will check for any violation of the requirements and run correctness tests. Feel free to add
more tests in A5.py. Do not hardcode your solutions for each public test cases.

Submission. Once you have completed and are ready to submit, upload two files to Gradescope

(accessed through Canvas): written.pdf and A5.py. Gradescope will immediately show the
results from running the requirement test and public test cases. If your file fails the tests in
requirement_A5.py, a 0 score will be assigned.

After the deadline, your written solution will be graded manually by our course staff; your
programming solution will be graded using our auto-grading script that contains private test
cases. Late submissions (for up to two days) will receive a 50% penalty.

1

https://www.yongshanding.com/cpsc447-f22/#assignments

CPSC 447/547 (Fall 2023) Assignment 5

WRITTEN PORTION

This portion of the assignment has a total of 80 points.

In this assignment, we will explore the basics of quantum error correction. In the first part
of the assignment, we will use the operator sum representation to understand some important
single-qubit quantum errors. Then in the second part, we introduce the stabilizer language to
describe quantum error correction codes.

2 Phase Flip Channel

Task 2.1 (⋆ pts)

Consider a single-qubit error model where the qubit experiences a phase flip, Z , with proba-
bility p, and stays the same otherwise. Specifically, if the input quantum state is ρi n , then the
output quantum state is:

ρout = p Zρi n Z † + (1−p)ρi n (1)

(a) Suppose ρi n = |ψ〉〈ψ| where
∣∣ψ〉 = 1p

2
(|0〉+ |1〉). What is ρout ? Write your answer as a 2×2

density matrix, in terms of parameter p.

(b) The effect of an error on a quantum system can be mathematically represented by a quan-
tum channel, E (ρ), defined as

E (ρ) =∑
k

EkρE †
k

where the Ek are called the Kraus operators satisfying the condition
∑

k E †
k Ek = I . Give the

set of two Kraus operators {E0,E1} describing the phase flip channel.

(c) Recall from lecture that one can model such error as an interaction of the quantum system
with an environment. The Kraus operators will then arise from tracing out the environment.
To see this, we construct a quantum circuit model for the phase flip channel as follows:

ρi n Z ρout

ρenv •
Here, the top qubit is the input quantum system, and the bottom qubit is the environment.
Give the environment state ρenv such that the circuit is equivalent to the phase flip channel
on the top qubit ρi n . Write ρenv as a density matrix in terms of the parameter p. (Hint: we
want to initialize ρenv such that a Z gate is performed on ρi n with probability p.)

3 Dephasing Channel

Task 3.1 (30 pts)

Dephasing channel is an important physical process in quantum systems; it does not make
any transitions in the {|0〉, |1〉} basis, but instead changes the relative phase between |0〉 and |1〉.

2

CPSC 447/547 (Fall 2023) Assignment 5

In the operator sum representation, we consider for a single-qubit input state ρ, a dephasing
channel is defined as

E (ρ) = E0ρE †
0 +E1ρE †

1

where E0 =
[

1 0
0

p
1−λ

]
,E1 =

[
0 0
0

p
λ

]
.

(a) Consider the input quantum state ρi n = |+〉〈+|. Give the output quantum state ρout =
E (ρi n). Write your answer as a 2×2 matrix in terms of λ.

(b) It turns out we can write the two Kraus operators as a linear combination of the Pauli op-
erators, I and Z . In particular, find the coefficients, a,b,c,d , such that E0 = aI +bZ and
E1 = cI +d Z . Write your answers in terms of λ.

(c) Use your solution to part (b) to rewrite the dephasing channel. Show that you can write
E (ρ) = E0ρE †

0 +E1ρE †
1 = p ZρZ † + (1−p)ρ for some p. Write p in terms of λ.

(d) (Optional) In real quantum systems, dephasing occurs continuously in time. Imagine r is
the rate of dephasing, so the dephasing parameter λ = r∆T ≪ 1 for some small interval of
time ∆T . At time T = n∆T , we can model the resulting quantum state as applying the de-
phasing channel n times: E n(ρ). Consider the input quantum state ρi n = |+〉〈+|. To model
a continuous dephasing process up to some constant time T , we divide T into n →∞ seg-
ments, each applied with E for infinitesimal duration ∆T . Give the output quantum state
at some fixed time T : ρout (T) = E n(ρi n), for n →∞. Write your answer as a 2×2 matrix for
ρout in terms of r and T .

4 7-Bit Hamming Code

Task 4.1 (⋆ pts)

Recall from lecture, we define a classical linear code using a k ×n generator matrix G and a
(n −k)×n parity check matrix H to encode k bits of information using n bits. The codewords
are defined as the column vectors x⃗v =GT v⃗ , where v⃗ is the column vector representing a k-bit
integer, ranging from 0 to 2k −1. Note that all arithmetic operations are done with modulo 2.
Errors can be detected by performing parity checks specified by the rows of a (n −k)×n matrix
H . A good parity check matrix satisfies the condition that H x⃗ = 0 for all codewords x⃗.

For example, the Hamming code encodes k = 4 bits using n = 7 bits. The generator matrix G
is defined as

G =

1 1 1 1 1 1 1
1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

 .

The parity check matrix H is defined as

H =
1 1 1 1 0 0 0

1 1 0 0 1 1 0
1 0 1 0 1 0 1

 .

(a) Give the column vector for the codeword x⃗0 =GT 0⃗. Here 0⃗ = [
0 0 0 0

]T
.

3

CPSC 447/547 (Fall 2023) Assignment 5

(b) Give the column vector for the codeword x⃗3 =GT 3⃗. Here 3⃗ = [
0 0 1 1

]T
.

(c) Give the column vector for the codeword x⃗15 =GT 1⃗5. Here 1⃗5 = [
1 1 1 1

]T
.

(d) Verify that H x⃗15 = 0.

(e) Consider an error e⃗ which occurs to one of the codewords, resulting in

y⃗ = x⃗ + e⃗ = [
0 1 1 0 0 1 0

]T
.

What are the results of the parity checks: H y⃗?

(f) Consider an error e⃗ which occurs to one of the codewords, resulting in y⃗ = x⃗ + e⃗. Suppose

the results of the parity checks: H y⃗ = [
0 0 1

]T
. If we assume that e⃗ is a single bit-flip, can

we locate the bit flip? If so, give e⃗. If not, explain why.

5 7-Qubit Steane Code

Task 5.1 (50 pts)

The 7-qubit code (also known as Steane code) is constructed from the classical 7-bit Hamming
code C . The Steane code encodes 1 qubit of information using 7 qubits. In this question, we
will explore this construction and its properties.

(a) For each codeword x of C , we define a 7-qubit quantum state |x〉. For example, if x =[
1 1 0 0 1 1 0

]T
, then |x〉 = |1100110〉. For each row h of the parity check matrix H ,

we define a Z -type stabilizer operator Sh . For example, if Hh = [
1 1 1 1 0 0 0

]
, then

Sh = Z ⊗Z ⊗Z ⊗Z ⊗ I ⊗ I ⊗ I . Show that |1100110〉 is a (+1)-eigenstate of all three stabilizers.
That is, Sh |1100110〉 = |1100110〉 for each Sh .

(b) A single-qubit bit-flip error can be diagnosed by the above stabilizers. Consider a non-
codeword

∣∣y
〉 = |0110010〉. Show that

∣∣y
〉

is a (−1)-eigenstate of at least one of the stabi-
lizers.

(c) In order to also diagnose phase flip errors, we group the codewords into two subsets: E =
{|x〉 : x ∈ C and x has even number of 1} and O = {|x〉 : x ∈ C and x has odd number of 1}.
List the elements in E and O respectively.

(d) We define the two codewords of the 7-qubit Steane code as follows:

|0〉L = 1p
8

∑
x∈E

|x〉, |1〉L = 1p
8

∑
x∈O

|x〉

We also define an additional set of stabilizers: For each row h of the parity check matrix
H , we define an X -type stabilizer operator S′

h . For example, if Hh = [
1 1 1 1 0 0 0

]
,

then S′
h = X ⊗X ⊗X ⊗X ⊗ I ⊗ I ⊗ I . Show that S′

h |0〉L = |0〉L and S′
h |1〉L = |1〉L for all three S′

h .

(e) Consider an initial quantum state
∣∣ψ〉

L =α|0〉L +β|1〉L . Due to some single-qubit bit-flip or
phase flip error, the quantum state results in

∣∣ψ′〉. Suppose the stabilizer syndrome mea-
surements have the following outcome:

S0
∣∣ψ′〉= ∣∣ψ′〉,S1

∣∣ψ′〉= ∣∣ψ′〉,S2
∣∣ψ′〉= ∣∣ψ′〉,S′

0

∣∣ψ′〉= ∣∣ψ′〉,S′
1

∣∣ψ′〉=−∣∣ψ′〉,S′
2

∣∣ψ′〉= ∣∣ψ′〉.

What was the error?

4

CPSC 447/547 (Fall 2023) Assignment 5

PROGRAMMING PORTION

This portion of the assignment has a total of 20 points.
Important: This portion is optional for CPSC 547 students.

In lectures, we discussed quantum error correction and how to correct general quantum er-
rors by modeling them with Pauli errors. In this programming task, you’ll first write a simulator
(Task 6) that computes the measurement results of a quantum circuit with only Clifford gates,
Pauli X̂ and CNOT, together with initialization and measurement in the Ẑ basis. Given some
(random) Pauli X̂ errors at specific positions throughout the circuit, your simulator will gen-
erate the measurement results stored as classical bits. Next, you’ll implement a QEC decoder
(Task 7) that takes the measurement results as input and compute a most likely error pattern
that generated this measurement result. This most likely error pattern can therefore be used to
correct the physical qubit errors and protects the state of the logical qubit.

6 Clifford Gate Simulation

Data Qubit 1 •
cbits[0]

Ancilla Ẑ1 Ẑ2 |0〉

Data Qubit 2 • •
cbits[1]

Ancilla Ẑ2 Ẑ3 |0〉

Data Qubit 3 •
Figure 1: Quantum Repetition Code (single round of measurement, code distance d = 3).

According to the Gottesman–Knill theorem, Clifford gates can be efficiently simulated in poly-
nomial time. This kind of simulation avoids keeping track of the exponential-sized quantum
state vector and thus can simulate many more qubits than what you implemented in Assign-
ment 1. Such simulation is especially helpful for analyzing quantum error correction codes.

We take the quantum repetition code as an example – it’s implemented with CNOT gates,
|0〉 initialization gates and Ẑ measurement gates. A single measurement round of the quantum
repetition code is shown in Figure 1. It consists of 4 steps:

• Step 0: initialize ancilla qubits to |0〉 states

• Step 1: simultaneous CNOT gates

• Step 2: simultaneous CNOT gates

• Step 3: measure ancilla qubits in Ẑ basis (= measure joint Ẑ1Ẑ2 of adjacent data qubits)

We assume the circuit is initialized into a joint +1 eigenstate of all stabilizer (measurement)
operators. Recall from lecture, this is called a logical codeword. Note that |0L〉 and |1L〉 form
an orthonormal basis, i.e., 〈0L|1L〉 = 0. Any superposition of these two logical basis states is a
logical state as well. Since quantum error correction does not obtain any information of the
logical qubit, we cannot make any assumption of the logical state. Fortunately, knowing that
the initial state is a joint +1 eigenstate is already enough for simulation.

5

CPSC 447/547 (Fall 2023) Assignment 5

To see how this is possible, we first look at two equivalent circuits in Figure 2. Only Pauli
X̂ error on the control qubit propagates to the target qubit. Thus, assuming there are some
kind of errors before the CNOT gate, we can easily calculate the errors after the CNOT gate by
commuting them through the CNOT gate.

Qubit 1 X •
=

• X •
=

•

Qubit 2 X X X

Figure 2: Equivalent Circuits.

Task 6.1 (10 pts)

Implement the function that computes the errors after gates:

• x_error: a Pauli X error. E.g. before = [False] then after = [True], vice versa.

• cx: CNOT gate. E.g. before = [True, False] then after = [True, True].

• initialize: initialize multiple qubits into their |0〉 states. after = [False, ...].

class Gate(object):
...
def commute_through(self, pauli_x_errors_before):

YOUR IMPLEMENTATION HERE

Task 6.2 (10 pts)

Implement the function that simulates one step. If this step is a normal gate, it updates the
Pauli X̂ errors self.qubits.pauli_x_errors by invoking the commute_through function. If
this step is a measurement gate, it updates the corresponding classical bits self.cbits.state
with new measurement: if it’s +1 measurement then False, if it’s -1 measurement then True. A
-1 measurement implies some Pauli X errors in the circuit, which needs to be corrected.

class QuantumCircuit(object):
...
def evolveOneStep(self):

YOUR IMPLEMENTATION HERE

You can check your implementation with public tests. One example test is shown in Figure 3:

6

CPSC 447/547 (Fall 2023) Assignment 5

Data Qubit 1 X

step 0 step 1

•
step 2 step 3

cbits[0]=True

step 0 step 1

•
step 2 step 3

cbits[2]=True
Ancilla Ẑ1 Ẑ2 |0〉 |0〉

Data Qubit 2 • •
cbits[1]=False

• •
cbits[3]=False

Ancilla Ẑ2 Ẑ3 |0〉 |0〉

Data Qubit 3

round 0

•
round 1

•

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 3: Basic example of simulation (2 rounds of measurements, each round has 4 steps).

7 Quantum Error Correction (QEC) Decoder

Given the simulator you’ve implemented in Task 6, you can simulate the measurement results
given any random Pauli errors. In Task 7, you’ll implement a decoder that takes the measure-
ment results as input, and try to identify and correct the errors in the circuit.

Your decoder should be aware of the noise model, which defines in which position errors
can happen, and at what probability. For simplicity, we consider three kinds of noise models.

• Code-Capacity Noise Model: each data qubit has X̂ error in step 0 with probability p.

• Phenomenological Noise Model: multiple rounds of measurement, each applying the code-
capacity noise model. Additionally, except for the last round, each stabilizer is subject to
measurement error with probability p, i.e. the measurement result is flipped. Note that
noisy_measurements = 0 is equivalent to the code-capacity noise model.

• Circuit-Level Noise Model: errors can happen anywhere (not limited to data qubits) with
probability p, except for the last round of measurement with step > 0.

Note that all three kinds of noise model assume a noiseless final measurement round. It’s
practical because the last measurement result usually comes from measuring all the data qubits
and compute (classically) the stabilizer results directly from the data qubit measurements.

You’ll implement a Most-Likely Error (MLE) decoder for each of these noise models. A MLE
decoder computes the most likely error pattern that causes this syndrome (all the stabilizer
measurement results). Assuming each error is independent, the probability of an error pattern
E ⊆ {e} is the product of each occurring error pe where e ∈ E and each non-occurring error 1−pe

where e ∉ E .
P (E) = ∏

e∈E
pe

∏
e∉E

(1−pe) = ∏
e∈E

pe

1−pe

∏
e

(1−pe) ∝ ∏
e∈E

pe

1−pe

Thus, maximizing P (E) is equivalent to maximizing
∏

e∈E
pe

1−pe
, which is also equivalent to min-

imizing
∑

e∈E log 1−pe
pe

= ∑
e∈E we where the weight is defined as we = log 1−pe

pe
. Since our noise

model only has single probability pe , you can safely use we = 1. In conclusion, the decoding

7

CPSC 447/547 (Fall 2023) Assignment 5

problem can be formalized as: given any syndrome S, compute error pattern E

E = argmin
E

∑
e∈E

we = argmin
E

∑
e∈E

ln
1−pe

pe
, subject to S(E) = S

Note that you don’t have to implement an algorithm that solves the above mathematical
problem. You only need to understand the concepts and convert the problem properly to im-
plement the decoder. Install a library by “pip3 install fusion-blossom==0.2.1”.

Task 7.1 (⋆ pts)

Implement a Most-Likely Error (MLE) decoder for code-capacity noise model.

class QuantumRepetitionCode(object):
...
def decode_code_capacity_noise(self, p, measurements, visualize=False):

YOUR IMPLEMENTATION HERE

All the possible errors in the code-capacity noise model are shown in Figure 4.

Data Qubit 1 X

step 0 step 1

•
step 2 step 3

cbits[0]
Ancilla Ẑ1 Ẑ2 |0〉

Data Qubit 2 X • •
cbits[1]

Ancilla Ẑ2 Ẑ3 |0〉

Data Qubit 3 X

round 0

•

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸
Figure 4: Code-Capacity Noise Model.

The measurement result is the parity check of the two adjacent data qubit errors. In or-
der to solve the most likely error pattern that causes the measurement result, you can use the
fusion-blossom library (https://github.com/yuewuo/fusion-blossom) to solve a Minimum-
Weight Parity Subgraph (MWPS). Given any (non-negative weighted) graph, it solves a subgraph
E (a subset of edges) that has minimum total weight (

∑
e∈E we) while satisfying the parity check:

• normal vertex: number of edges incident to this vertex is even. This is useful when de-
scribing cbit = False.

• defect vertex: number of edges incident to this vertex is odd. This is useful when describing
cbit = True: odd number of independent errors causing this -1 stabilizer measurement.

• virtual vertex: number of edges incident to this vertex is arbitrary. This is useful when an
independent error only causes a single defect vertex, in which case you can connect the
other end to a virtual vertex.

8

https://github.com/yuewuo/fusion-blossom

CPSC 447/547 (Fall 2023) Assignment 5

We have created the vertices for you in the starter code. Here is the layout of vertices. You
can modify testBasicDecode() function by changing visualize=False to visualize=True
to open the visualization tool for ease of debugging1. The middle two white vertices corre-
sponds to the measurement results (normal vertex or defect vertex), while the yellow ones are
virtual vertices. You should first complete the decoding graph by adding edges to it. Each edge
corresponds to an independent error (the three X̂ errors in Figure 4). Each edge connects the
2 vertices that can detect the error. Specifically, you should append edges to weighted_edges
list, with a format (vertex_index_1, vertex_index_2, weight).

Figure 5: Decoding Graph of Code-Capacity Noise Model (vertex indices [0, 1, 2, 3] from left to right)

Then, try to convert the measurement results to defect vertices in their indices. For ex-
ample, a measurement results of [False, False] corresponds to defect vertices []. Simi-
larly, [True, False] -> [1], [False, True] -> [2], [True, True] -> [1,2]. Defect
vertices are marked as red circle in the visualization tool.

Finally, given the Minimum-Weight Parity Subgraph (MWPS) result subgraph, you’ll calcu-
late the correction on the data qubits. Specifically, correction is a list of bool value with length
equal to the number of data qubits (or code distance d in quantum repetition code). A True
means the corresponding data qubit should be corrected by X̂ . Given the indices of edges in
subgraph (depending on how you add the edges), you can flip the value in the correction.

Once finished, you should pass the testBasicDecode test case.

Task 7.2 (⋆ pts)

Implement a Most-Likely Error (MLE) decoder for phenomenological noise model.

class QuantumRepetitionCode(object):
...
def decode_phenomenological_noise(self, p, measurements, visualize=False):

YOUR IMPLEMENTATION HERE

All the possible errors in the phenomenological noise model are shown in Figure 6.

1You need a browser to open the visualization tool. Although it’s not necessary to finish the assignment, it helps in debugging.

9

CPSC 447/547 (Fall 2023) Assignment 5

Data Qubit 1 X

step 0 step 1

•
step 2 step 3

cbits[0]
X

step 0 step 1

•
step 2 step 3

cbits[2]
X

step 0

•
cbits[4]

Ancilla Ẑ1 Ẑ2 |0〉 X |0〉 X |0〉

Data Qubit 2 X • •
cbits[1]

X • •
cbits[3]

X • •
cbits[5]

Ancilla Ẑ2 Ẑ3 |0〉 X |0〉 X |0〉

Data Qubit 3 X

round 0

• X

round 1

• X •
round 2 (noiseless meas)

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 6: Phenomenological Noise Model (noisy_measurement = 2).

The phenomenological noise model adds pure measurement errors on top of the code-
capacity noise model. In this case, the defect vertex does not necessarily corresponds to -1
stabilizer measurement (or cbit = True) because a single error will change all the measure-
ment value afterwards. Thus, here we use defect vertex to represent measurement results that
are different from the previous round. A pure measurement error appears as a pair of defect
vertices because the measurement result will change twice.

We have built the vertices in the starter code, but feel free to modify it as you like. Similar
to the previous task, you’ll first complete the decoding graph as shown in Figure 7. Then create
the defect vertices given the measurement results. Finally build the correction given the MWPS.
Note that not all edges in the MWPS change the correction pattern, e.g. pure measurement
errors does not affect data qubits.

Figure 7: Decoding Graph of Phenomenological Noise Model (vertex indices [0, 1, 2, 3] at the bottom)

Once finished, you should pass the testDecodePhenomenological test case.

Task 7.3 (⋆ pts)

Implement a Most-Likely Error (MLE) decoder for circuit-level noise model.

class QuantumRepetitionCode(object):
...
def decode_circuit_level_noise(self, p, measurements, visualize=False):

YOUR IMPLEMENTATION HERE

All the possible errors in the circuit-level noise model are shown in Figure 8.

10

CPSC 447/547 (Fall 2023) Assignment 5

Data Qubit 1 X

step 0

X • X X

cbits[0]
X

step 0

X • X X

cbits[2]
X

step 0

•
cbits[4]

Ancilla Ẑ1 Ẑ2 X |0〉 X X X X |0〉 X X X X |0〉

Data Qubit 2 X X • X • X

cbits[1]
X X • X • X

cbits[3]
X • •

cbits[5]
Ancilla Ẑ2 Ẑ3 X |0〉 X X X X |0〉 X X X X |0〉

Data Qubit 3 X X

round 0

X • X X X

round 1

X • X X •
round 2 (noiseless meas)

︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 8: Circuit-Level Noise Model (noisy_measurement = 2).

Note that there are some errors that correspond to diagonal edges in the decoding graph.
For example an error at round 0, step 2 on data qubit 2 generates defect vertices in round 0 at
Ẑ1Ẑ2 stabilizer and round 1 at Ẑ2Ẑ3 stabilizer.

Task 7.4 (⋆ pts)

Evaluate decoder thresholds. In this task, you do not need to submit any results. You may need
to modify your code to support different noisy_measurements and d (code distance) values.
You’ll get full score by achieving a reasonable logical error rate as shown in the following figures.

For the code-capacity noise model, it has an optimal threshold of pth = 0.5. That is, given
any physical error rate below the threshold, one can always achieve exponentially lower logical
error rate by increasing the code distance d. Use the evaluateDecoderThreshold function to
evaluate your decoder. An example is in Figure 9.

10 2 10 1

physical error rate

10 2

10 1

lo
gi

ca
l e

rro
r r

at
e

Code-Capacity Noise Model
d = 3
d = 5
d = 7
d = 9
d = 11

Figure 9: Code Capacity Noise Decoder

For the phenomenological noise model and circuit-level noise model, it has lower threshold.
Use the evaluateDecoderThresholdPhenomenological/CircuitLevel functions to evalu-
ate your decoder. Examples are shown in Figure 10a and Figure 10b.

11

CPSC 447/547 (Fall 2023) Assignment 5

10 2 10 1

physical error rate

10 2

10 1

lo
gi

ca
l e

rro
r r

at
e

Phenomenological Noise Model
d = 3
d = 5
d = 7
d = 9
d = 11

(a) Phenomenological Noise Decoder

10 3 10 2 10 1

physical error rate

10 2

10 1

lo
gi

ca
l e

rro
r r

at
e

Circuit-Level Noise Model
d = 3
d = 5
d = 7
d = 9
d = 11

(b) Circuit-Level Noise Decoder

Task 7.5 (⋆ pts)

Understand logical error rate. In the previous evaluation, we use noisy_measurements = d to
simulate a minimum fault-tolerant logical state preparation. In reality, the logical qubit should
last for much longer than the lifetime of a physical qubit. When the physical error rate is below
the threshold, we can increase the code distance to achieve exponentially longer logical qubit
lifetime. Use the evaluateLogicalErrorAccumulation function to understand how logical
qubit’s error rate changes with time (rounds of noisy measurements). We also plot the physical
qubit’s error accumulation labeled in d = 1. An example is in Figure 11.

25 50 75 100 125 150 175 200
noisy measurements

10 3

10 2

10 1

lo
gi

ca
l e

rro
r r

at
e

Logical Error Accumulation

d = 1
d = 3
d = 5
d = 7

Figure 11: Logical Error Accumulation in Phenomenological Noise Model with p = 0.02

12

	Introduction
	Phase Flip Channel
	(pts)

	Dephasing Channel
	(30 pts)

	7-Bit Hamming Code
	(pts)

	7-Qubit Steane Code
	(50 pts)

	Clifford Gate Simulation
	(10 pts)
	(10 pts)

	Quantum Error Correction (QEC) Decoder
	(pts)
	(pts)
	(pts)
	(pts)
	(pts)

