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Structure of the Course

TOPICS

Four Modules

1. The mathematical formulation of quantum information and computation

2. Building blocks of a universal quantum computer

3. Some quantum algorithms and their applications

4. Practicality of fault-tolerant quantum computation



A Computer Scientist’s Guide to Quantum Computing

TOPICS

Theory:
Algorithms and complexity

Systems:
Programming language, compiler, computer architecture



Theory of Computing

Quantum science meets computer science

Quantum Theory

THE VISION

Smart phones 

Internet

Artificial intelligence  

Lasers           MRI

Atomic clocks

GPS        Transistors

New technologies? Quantum Communication

Quantum Computation

Quantum Simulation

Quantum Sensing



Solve Problems Faster with a Quantum Computer
COMPLEXITY

Complexity: ! (log& '(log log&)) quantum gates
Quantum subroutine in an algorithm: encode and process information in quantum systems.

Some problems are hard to compute, in terms of resources in space (memory) or time (steps).
But they might be easier in a quantum world. 

Prime Factorization [Shor, 1994]

Source: https://en.wikipedia.org/wiki/Shor%27s_algorithm



Computational Hardness
This is similar to using randomness as a computational resource: 
e.g., solving problems faster if we allow making random moves in an algorithm.   

COMPLEXITY

Minimum Cut

Source: https://en.wikipedia.org/wiki/Randomized_algorithm#Min_cut

[Karger, 1993]

Complexity: !(#$%)
Variant: '!($%)



The physics of computation

The laws of physics determines what kinds of computation can be done (efficiently).

FUNDAMENTAL LIMITS

Laws of physicsAllowed 
instruction set

Deterministic moves

Coin flips

Quantum evolution

Computation
Hardness

Extended Church-Turing thesis? 
The set of problems that can be efficiently computed (in polynomial time) is the same 
for any realistic (physically realizable in principle) model of computation, such as a probabilistic Turing Machine.

quantum algorithm

randomized algorithm

deterministic algorithm

Efficiently 
solvable by



Computational Hardness
COMPLEXITY

Emergence of computational problems that are inherently quantum.

Some problems are hard to compute, in terms of resources in space (memory) and time (steps).
But easier in a quantum world. 

Quantum Simulation [Manin, Feynman, 1982]

“The full description of quantum mechanics for a large system with R particles… has too 
many variables, it cannot be simulated with a normal computer with a number of 
elements proportional to R…

And therefore, the problem is, how can we simulate the quantum mechanics? … We can 
give up on our rule about what the computer was, we can say:

Let the computer itself be built of quantum mechanical elements which obey quantum 
mechanical laws. ”



Moore’s law hits a wall
PRACTICAL LIMIT

Source: https://github.com/karlrupp/microprocessor-trend-data

CMOS Transistor 

Input Output

Vdd

PMOS

NMOS

Not gate
Input Output

0 1

1 0

Dennard’s Scaling:

As transistors shrink, power consumption per unit area 
on chip stays the same.

This is no longer true, as of early 2000s.

Transistor dimension↓
energy↓, op frequency↑ 

In real life, exponential growth cannot be sustained. [~2000]



Implementing a Quantum Bit (Qubit)

[Schoelkopf, Devoret, Girvin, 2003]

BREAKTHROUGHS

Fighting off decoherence – a natural tendency to reduce to classical behavior
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Transmon Qubit

!

~
"#(%)

Flux drive

Microwave drive

'(
')
'*

+()
+)*

Transmon energy levels

Sensitive to flux noise Sweet spots 

�01
�12

-1.0 -0.5 0.0 0.5 1.0
1

2

3

4

5

6

7

8

External magnetic flux, �/�

Q
ub
it
fre
qu
en
cy
,�

/2
�
(G
H
z)

JJ

JJ

! = # 0 + & 1 ∈ ℂ*

Atom/Ion qubits Superconducting Transmon qubit

Quantum Bit: 
Represent 0 and 1 at the same time, as a linear combination: 

1
0



Emerging Quantum Computers
Noisy Intermediate-Scale Quantum (NISQ) Devices: 100-1000 qubits

THE PROGRESS

2020
……

20152010

Photos from: NIST, IBM Q Graham Carlow, Google AI Quantum, Kai Hudek IonQ, E. Edwards JQI, Hansen Zhong USTC

2025

IBM Roadmap



Gap between Algorithms and Hardware
THE GAP

Shor’s Algo (FT): ~10$, ~10&'

Quantum simulation (FT): ~10(, ~10&(
VQE/QAOA (NISQ)

Grover’s Algo (FT): ~10$, ~10&'
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Lack of Computer Architecture
Hardware Organization

THE HW/SW INTERFACE

CLASSICAL QUANTUM

Trapped 

Ion

Superconducting

Transmon

[Source: IBM Q]

[Source: IonQ]

Rydberg Atoms

[Source: Bluvstein

et al, Nature, 2022]

Apple M1 Chip

[Source: Toptal.com]
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Classical v.s. Quantum Information

Read 
&

Write

QUBIT

Logic

Classical Bit Quantum Bit

0 1

Boolean algebra Linear algebra
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Quantum Computation Model
QUBIT

Classical Input

Quantum Input

3

! ∝ 0.6 3 + 0.8|5⟩

Goal: compute function f(x) = x + 1

input output

x

0
f

x

f(x)

“Writing output out-of-place”
(reversible)

f

f

3

4

! ∝ (0.6 3 + 0.8|5⟩)(0.6 4 + 0.8|6⟩)?
! ∝ (0.6 3 4 + 0.8|5⟩|6⟩)?What is the output?



Superposition and Interference
The massive quantum parallelism

Feynman paths: 
describe the transitions between superposition of states.

QUBITS

ℂ"# = ℂ" ⊗ ℂ" ⊗ ℂ" ⊗ ⋅⋅⋅ ⊗ ℂ" ⊗ ℂ"

…

https://github.com/Yale-QCS/feynman-path-visualizer



Superposition and Interference
The massive quantum parallelism

QUBITS

…

Feynman-path visualization: https://github.com/Yale-QCS/feynman-path-visualizer



From Vacuum Tubes to Modern Computers
THE HISTORY

How do we build practical quantum computers sooner? 
The answer has to do with leveraging digital computers and experience of building digital computers.

IBM Q (2019)

Photo from: en.wikipedia.org, www.techspot.com

IBM System/360 at NASA (1960s)



Emerging Applications
THE POTENTIAL

• Post-Quantum 
Cryptography 

• Distributed/blind 
computation

• Secure 
Communication

Comp. Data Science

• Optimizations 
• Adiabatic algorithms
• Quantum Linear 

Algebra

Numerical Analysis

• Quantum chemistry
• Quantum material 

science
• Quantum gravity

Simulation

• Quantum Neural 
Networks

• Quantum Learning 
Theory

Machine Learning

…

Computational tasks that are considered potentially easy on quantum computers:



Quantum State
MODULE 1

! = # 0 + & 1 ∈ ℂ*

0

1

• Normalized: # * + & * = 1
• Global phase does not matter:

! and e,- ! not distinguishable 
#
& ~ /

0123 ~ /
012 1 − /* : two real numbers

1

0
/* 6

0 ≤ / ≤ 1, 0 ≤ 6 < 2;

+ = 1
2 0 + 1

2 1

− = 1
2 0 − 1

2 1

! = 0.6 0 + 0.8 1

basis



Quantum Measurement
MODULE 1

Basis #1
Basis #2

! = # 0 + & 1 = #′ + + &′ −

Randomness:
The measurement event is inherently random, 
even given full description of the qubits.

Irreversibility:
The measurement operation collapses the 
quantum state to the associated subspace. This 
process cannot be reversed.

Non-commutativity:
When A and B do not commute, measuring 
operator A influences the outcome of the 
subsequent measurement B.

Projection to subspaces * of ℂ,-.

Orthonormal decomposition ℂ,- = *. ⊕*, ⊕⋅⋅⋅⊕ *1



Entanglement – non-local information

A new notion of shared state..

MODULE 1

Information is not stored in any subsystems, but as correlations in the entire system.  

Random outcome Random outcome

But if measure in an agreed basis, their outcome will always be the same.

Same outcome Same outcome

1
2 00 + 1

2 11 = 1
2 + + + 1

2 − −

or or



Entanglement is stronger than classical correlation
Clauser–Horne–Shimony–Holt (CHSH) Game

MODULE 1

Entanglement can be used as a resource.
More example: generating certifiable randomness. 

Shared randomness: ≤75%

Shared entanglement: ≈85%

# $

Input: %Input: & Goal is to jointly compute:
# ⊕ $ = & ∧ %

Alice Bob

Theory: J. Bell (1964)
Experiment: A. Aspect et al., early ’80s  



Unitary Transformation
MODULE 1

Linear algebra: unitary matrices !"# = !% (Prove it!)
&
'

(
)

Computational universality:
A subset of operations can implement arbitrary 
transformations.
Claim: Any single-qubit transformation can be implemented by Rx and Rz gates. 

*+(-) */(-)
Exercise: 
Implement an arbitrary angle, arbitrary axis rotation 
by three Rx and Rz rotations.



Circuit Synthesis and Quantum Compiling
MODULE 2

Linear algebra: unitary matrices !"# = !% (Prove it!)
&
'

(
)

In fact, Hadamard and *+(-//) gates can implement any single-qubit transformations.
Two-qubit gates can implement arbitrary transformation on any number of qubits. 

In practice, having a redundantly universal instruction set can be helpful: more efficient circuit. 

A quantum circuit/program specifies a sequence of quantum gates and measurements. 

Source: Amy et al, https://arxiv.org/abs/1206.0758



Quantum errors
MODULE 4

Decoherence: loss of information to the environment (e.g., bit-type errors, phase-type errors).

… !
" ~ $

%&'( ~ $
%&' 1 − $+ : two real numbers

0 ≤ $ ≤ 1, 0 ≤ 0 < 23
• Bit-type errors: random disturbance to $.

• Amplitude damping: spontaneous decay from |0⟩ to |1⟩ at a random time.
• Phase-type errors: random disturbance to 0.

• Dephasing: spontaneous loss of phase information



Quantum errors and how to catch them
MODULE 4

Protecting information against decoherence:
• Redundancy: encode information non-locally.
• Error detection/correction: frequent checks to restore information

…

…

ℂ"# = ℂ" ⊗ ℂ" ⊗ ℂ" ⊗ ⋅⋅⋅ ⊗ ℂ" ⊗ ℂ"

Logical subspace
'(

Error subspace
')

= '* ⊕'" ⊕', ⊕'- ⊕⋅⋅⋅⊕ '.

'(
'/0112/34562

')

…Detection

Correction


