
Assignment 1 Due: Wednesday, September 17th , 2025 @ 11:59PM

CPSC 4470/5470 Introduction to Quantum Computing (Fall 2025)

1 Introduction

Welcome to the first assignment for CPSC 4470/5470 (Introduction to Quantum Computing).
Before getting started, please take a moment to read the course syllabus and familiarize your-
self with the homework policies, including on late days and collaborations. Importantly, if you
discussed with anyone besides the course staff about the assignment, please list their names in
your submission.

Getting Started.

This assignment covers the basics of quantum computation, focusing on the first two weeks
of classes. It has two parts, a written portion (52%) and a programming portion (48%). The tasks
that are marked by “(⋆ pts)” are optional. Typesetting your solutions to the written portion is
not mandatory but highly encouraged. Some basic familiarity with Python and object-oriented
programming is required to complete the programming portion of this assignment. To start,

• Create a folder for Assignment 1, e.g., A1/

• Download the starter files for this assignment to that folder from the course website:

– written.tex
– A1.py
– requirement_A1.py (Do not modify)

• Write your solutions in A1.py (for programming tasks) and in written.tex or on paper
(for written tasks).

• Debug and test your solution locally by running ‘python3 A1.py’ on command line. This
will check for any violation of the requirements and run correctness tests. Feel free to add
more tests in A1.py. Do not hardcode your solutions for each public test case.

Please see instructor’s Ed post for more information and tips for the assignment.

Submission.

Once you have completed and are ready to submit, upload two files to Gradescope (accessed
through Canvas): written.pdf and A1.py. Gradescope will immediately show the results from
running the requirement test and public test cases. If your file fails the requirement_A1.py
check, a 0 score will be assigned.

After the deadline, your written solution will be graded manually by our course staff; your
programming solution will be graded using our auto-grading script that contains private test
cases.

1

https://www.yongshanding.com/cpsc447-f25/#assignments
https://www.yongshanding.com/cpsc447-f25/#assignments

CPSC 4470/5470 (Fall 2025) Assignment 1

WRITTEN PORTION

This portion of the assignment has a total of 52 points.

2 Complex numbers

“Life is complex – it has both the real and imaginary parts.” – Unknown. In class, we saw that
a complex number α has a form: α = a1 + a2i , where a1, a2 ∈ R and i = p−1. In the following
tasks, we will learn to work with complex numbers.

Task 2.1 (9 pts)

Given a non-zero complex numberα= a1+a2i , compute the following expressions. Please write
your answers by specifying the real and imaginary parts.

(a) 1
α

(b) |α|2

(c) α2

Task 2.2 (⋆ pts)

Given a non-zero complex numberα= a1+a2i , compute the following expressions. Please write
your answers by specifying the real and imaginary parts.

(a) e−iα

(b) 1
2i (α−α∗)

Task 2.3 (6 pts)

Simplify the following expression. Please write your answers in the form of x + yi .

(a)
(
sin π

4 + i cos π
4

)3

(b) Find all α such that α3 = 1.

3 State vectors

“Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.” – Asher
Peres. As we see in lectures, a quantum state for n qubits can be described as a vector in a 2n

dimensional Hilbert space. Mathematically, we use Dirac’s bra-ket notation:∣∣ψ〉= ∑
j∈{0,1}n

α j
∣∣ j

〉
where α j ∈C satisfy the normalization condition:

∑
j |α j |2 = 1.

2

CPSC 4470/5470 (Fall 2025) Assignment 1

Task 3.1 (12 pts)

For the following complex vectors, are they valid quantum states? If a vector |x〉 is a valid quan-
tum state, what is its outer product, |x〉〈x|? If not a valid quantum state, what is its inner product,
〈x|x〉?
(a) |x〉 = 1+ip

2
|0〉+ 1−ip

2
|1〉

(b) |x〉 = 1p
2
|0〉+ −ip

2
|1〉

(c) |x〉 = e−iπ/8|0〉+e iπ/8|1〉

Task 3.2 (10 pts)

A single-qubit quantum state is a vector in the 2-dim Hilbert space. As we discussed in class,
a basis for this vector space is a set of vectors such that they span the entire vector space and
are linearly independent. An example of such basis is {|0〉, |1〉} (which we call the computational
basis). Another example is {|+i 〉, |−i 〉}, where |+i 〉 = 1p

2
(|0〉+ i |1〉) and |−i 〉 = 1p

2
(|0〉− i |1〉). This

means that any single-qubit quantum state can be written as a linear combination of the basis
vectors. For each of the following quantum states:

• first compute the inner product 〈ψ|+ i 〉, and

• then write
∣∣ψ〉

in the {|+i 〉, |−i 〉} basis, i.e., find α,β ∈C such that
∣∣ψ〉=α|+i 〉+β|−i 〉.

(a)
∣∣ψ〉= |0〉

(b)
∣∣ψ〉= 1p

2
(|0〉+ |1〉)

4 Distinguishing quantum states

In class, we learned that we can distinguish two quantum states via physical experiments, such
as applying quantum gates and measurements.

Carol is an experimental physicist. One afternoon, she prepares two qubits (i.e., photon A
and photon B) in certain state

∣∣ψAB
〉

and gives qubit A to Alice and qubit B to Bob. Out of
curiosity, Alice and Bob want to figure out if the qubits they receive are the same or different.
Since they only received one copy of the qubits each, they cannot simply measure multiple
copies of their qubits and reconstruct the distribution of the measurement outcomes. So they
turn to you for help.

Task 4.1 (15 pts)

In each of the following scenario, Carol has told you the state of the qubits; your job is to tell
Alice and Bob what quantum gates they can perform, so that a computational basis measure-
ment will distinguish the two states with certainty (that is, with single shot of measurement).
If this is not possible, explain why. (Note: Alice and Bob need to perform the exact same set of
single-qubit gates on their own qubit, if any. No interaction between the two qubits is allowed.)
Allowed quantum gates are:

3

CPSC 4470/5470 (Fall 2025) Assignment 1

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H = 1p

2

[
1 1
1 −1

]
,

S =
[

1 0
0 i

]
,S† =

[
1 0
0 −i

]
,T =

[
1 0
0 e iπ/4

]
,T † =

[
1 0
0 e−iπ/4

]
,
p

X = 1

2

[
1+ i 1− i
1− i 1+ i

]
For example, if

∣∣ψAB
〉 = |+〉⊗ |−〉, then it is possible and we can apply H gate then measure

in the standard basis, because H |+〉 = |0〉, H |−〉 = |1〉.
(a)

∣∣ψAB
〉= (|0〉+i |1〉p

2

)
⊗

(|0〉−i |1〉p
2

)
(b)

∣∣ψAB
〉= (|0〉+e−iπ/4|1〉p

2

)
⊗

(
eiπ/8|0〉+e−iπ/8|1〉p

2

)
Task 4.2 (⋆ pts)

When qubits are entangled, your job again is to tell Alice and Bob what quantum gates they can
perform, so that a computational basis measurement outcome will be different for them. If this
is not possible, explain why.

(a)
∣∣ψAB

〉= 1p
2

(|00〉+ |11〉)

(b)
∣∣ψAB

〉= 1p
2

(|+〉⊗ |+〉+ |−〉⊗ |−〉)

PROGRAMMING PORTION

This portion of the assignment has a total of 48 points.

5 Circuit Simulator

Please read the instructions for how to get started with the programming tasks in Section 1. The
goal of these tasks is to understand the basic data structures and operations used in quantum
circuits. In the end, we will have a working in-house quantum circuit simulator.

Before attempting the following tasks, you may want to read the starter code in A1.py care-
fully. We have provided a simple implementation of the Qubit class, the Gate class and the
QuantumCircuit class. The implementation of the h gate and the measure operation have al-
ready been given.

Task 5.1 (24 pts)

Implement the gate instructions in the QuantumCircuit class. In this task, you will extend the
QuantumCircuit class by implementing the instruction set (i.e., all logical gates supported in
the quantum circuit). Each gate method should:

1. Instantiate the Gate object using the gate’s name (string), the number of qubits it acts on,
and its corresponding unitary matrix (as a NumPy array).
Example:
HGate = Gate(’h’,1,1/np.sqrt(2)*np.array([[1,1],[1,-1]],dtype=complex))

4

CPSC 4470/5470 (Fall 2025) Assignment 1

2. Append the gate to the circuit by calling the _append() method of the QuantumCircuit
class.

For example, in A1.py, you will find the Hadamard gate defined as follows:

def h(self, qubit):
Define Gate by its name, kind (number of qubit), and matrix
HGate = Gate('h',1,1/np.sqrt(2)*np.array([[1,1],[1,-1]],dtype=complex))
self._append(HGate, [qubit], [])
return

Notice that the _append function takes three arguments: a Gate object, a list of qubit indices
on which the gate acts, and a list of classical bit indices. For this assignment, you can assume
the classical bit list is always empty ([]). Usage example: once the Hadamard method is imple-
mented, we can build a simple quantum circuit like this:

qc = QuantumCircuit(1, 1)
qc.h(0)

Following this pattern, your task is to implement additional gate methods, including the Pauli
gates (X, Y, Z), Phase gates (S and its inverse S†), T gates (T and its inverse T†), two-qubit
controlled gates (cx and cz) and three-qubit Toffoli gate (toffoli).

Task 5.2 (⋆ pts)

Implement the permutation function that constructs a permutation matrix representing how
to reorder qubits. Although this task is optional, the permutation matrix will be very useful
for the next task, where you will need to implicitly reorder qubits in multi-qubit operations.
The function takes as input a list of indices of length n, which describes how to reorder the
qubit register [0,1,2,..., n-1], and returns a 2n ×2n matrix (as np.array). You can assume
that indices is a valid list containing integers 0, . . . ,n − 1. If indices[i]==p, then the qubit
at original position i moves to position p. The resulting permutation matrix is a binary matrix
with exactly one “1” in each row and one “1” in each column (all other entries are zero).

Concretely,

• permutation([0,1,2,3]) should return the identity matrix of size 24 ×24.

• permutation([3,1,0,2])produces a matrix that, when applied to a basis state
∣∣q0q1q2q3

〉
,

reorders the qubit indices to
∣∣q2q1q3q0

〉
.

Hint: think about the meaning of an entry in the permutation matrix: if the entry at column
j and row k is 1, that means the j th computational basis state

∣∣ j
〉

is mapped to the k th basis
state |k〉. For example, permutation([2,0,1]) should return a matrix that looks like:

P=



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


5

CPSC 4470/5470 (Fall 2025) Assignment 1

Task 5.3 (24 pts)

Implement the tensorizeGate function. It takes as input a quantum gate (on one, two or three
qubits) and a list of qubit indices it acts on. The function returns the corresponding full uni-
tary matrix acting on all qubits in QuantumRegister) of the circuit. You can assume that the
input gate object has its matrix defined (dimension 2k × 2k where k = 1,2,3) and we want to
produce a 2n ×2n matrix where n is the total number of qubits in the register. We assume the
standard ordering of basis states:

∣∣q0q1q2 . . . qn−1
〉

. That means qubit 0 is the leftmost bit in the
computational basis representation.

For example, if the QuantumRegister has 3 qubits and the quantum gate cx acts on qubits
q2 (as control) and q0 (as target), then tensorizeGate should return the 23 ×23 matrix (as an
np.array) for that operation, with identities on untouched qubits.

qc = QuantumCircuit(3, 3)
qc.cx(2, 0)
(op, q_arr, _) = qc.circuit[qc.pc]
tensorized = qc.tensorizeGate(op, q_arr)

The above lines of code will result in the following matrix:

tensorized=



1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0


Hint: A neat way to build the full tensorized gate is to use permutation matrices (from the

previous task) to shuffle the qubits into the right place:

Utensorized = P−1(G ⊗ Irest)P

where G is the gate matrix (acting on consecutive qubits), Ir est is the identity on the other
qubits, and P is a permutation matrix to rearrange the qubits. For example, for cx([2,0])
in a 3-qubit system, we can write:

cx(2,0)= permutation([2,0,1]) · (cx(0,1)⊗ I)) ·permutation([1,2,0])
This “sandwiching” trick will simplify your implementation and generalization to any set of
control/target qubits.

Task 5.4 (⋆ pts)

Implement the simulate function. This function simulates the quantum circuit from scratch,
returning a final quantum state vector (as an np.array of complex type) if there are no mea-
surements in the circuit, or a sampled classical state vector (as an np.array of bool type) other-
wise. Please use the provided sampleBit function for random sampling. You may use/modify
the evolveOneStep function as a helper function for simulate. You may assume that all mea-
surements are the last few elements in circuit if any. For this assignment, you may also as-
sume that (computational basis) measurement (if present) will be performed to all qubits.

6

	Introduction
	Complex numbers
	(9 pts)
	(pts)
	(6 pts)

	State vectors
	(12 pts)
	(10 pts)

	Distinguishing quantum states
	(15 pts)
	(pts)

	Circuit Simulator
	(24 pts)
	(pts)
	(24 pts)
	(pts)

