
Assignment 2 Written Part Due: Monday, September 29th , 2025 @ 11:59PM
Programming Part Due: Monday, October 13th , 2025 @ 11:59PM

CPSC 4470/5470 Introduction to Quantum Computing (Fall 2025)

1 Introduction

Welcome to Assignment 2 for CPSC 4470/5470 (Introduction to Quantum Computing). As
usual, collaboration is encouraged; if you discussed with anyone besides the course staff about
the assignment, please list their names in your submission.

Getting Started.

This assignment has two parts, a written portion and a programming portion. The tasks that
are marked by “(⋆ pts)” are optional. Typesetting your solutions to the written portion is not
mandatory but highly encouraged. See the instructor’s note on Ed for details about Latex for
quantum computing. Some basic familiarity with Python and object-oriented programming is
required to complete the programming portion of this assignment. No Python packages, except
for math and numpy, are allowed. To start,

• Create a folder for Assignment 2, e.g., A2/

• Download the starter files for this assignment to that folder from the course website:

– written.tex

– A2.py

– requirement_A2.py (Do not modify)

• Write your solutions in A2.py (for programming tasks) and in written.tex or on paper
(for written tasks).

• Debug and test your solution locally by running ‘python3 A2.py’ on command line. This
will check for any violation of the requirements and run correctness tests. Feel free to add
more tests in A2.py. Do not hardcode your solutions for each public test case.

Submission. Once you have completed and are ready to submit, upload two files to Gradescope

(accessed through Canvas): written.pdf and A2.py. Gradescope will immediately show the
results from running the requirement test and public test cases. If your file fails the tests in
requirement_A2.py, a 0 score will be assigned.

After the deadline, your written solution will be graded manually by our course staff; your
programming solution will be graded using our auto-grading script that contains private test
cases.
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WRITTEN PORTION

This portion of the assignment has a total of 49 points.

2 Measurements

Recall from lecture, a quantum measurement, represented by an observable O, will probablisti-
cally collapse a quantum state to one of the eigen-basis states of O. Specifically, by the spectral
theorem, we can write O = ∑

i λi |ei 〉〈ei | and associate the measurement event with a random
variable x, where x =λi if the measurement outcome is its associated eigen-basis |ei 〉.

Task 2.1 (9 pts)

In this task, we perform measurements by the observable σx = (+1) |+〉〈+|+ (−1) |−〉〈−|, where
|±〉 = 1p

2
(|0〉± |1〉). For each of the following quantum states, first write it in the form of |x〉 =

α|+〉 +β|−〉, for some complex numbers α,β. Or if |x〉 is a two-qubit state, then we want to
measure the first qubit, so write the state in the form of |x〉 = α|+〉 ⊗ ∣∣ψ+

〉+β|−〉 ⊗ ∣∣ψ−
〉

, for
some single-qubit states

∣∣ψ+
〉

,
∣∣ψ−

〉
. Then answer what is the probability that the measurement

outcome is |+〉?
(a) |x〉 = |0〉
(b) |x〉 = 1+i

2 |0〉+ 1−i
2 |1〉

(c) |x〉 = 1p
2
|00〉+ 1p

2
|11〉

Task 2.2 (12 pts)

Suppose we are given two qubits, A and B , in the following state:
∣∣ψAB

〉 = 1p
3
|00〉 + 1p

3
|01〉 +

1p
3
|10〉. For each of the following measurement scenarios (a-c), calculate the expectation value

when measuring
∣∣ψAB

〉
.

(a) Only measure qubit A in the x basis, that is, with observable O =σx ⊗ I .

(b) Only measure qubit B in the x basis, that is, with observable O = I ⊗σx .

(c) Measure both qubits jointly in the x ⊗x basis, that is, with observable O =σx ⊗σx .

(d) Following part (a), if the measurement outcome is |+〉, what is the state of qubit B after the
measurement?

Task 2.3 (⋆ pts)

Suppose we are given a qubit and a promise that the state of the qubit
∣∣ψ〉

is either |+〉 or |−〉.
In this question, we will learn how to figure out which state the qubit is in without directly
measuring

∣∣ψ〉
. The key here is to use an ancillary qubit and two-qubit gates. Let’s take a look

at the following quantum circuit:

|0〉 H • H∣∣ψ〉
?
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(a) Suppose
∣∣ψ〉 = |+〉, then what is the probability that the top qubit measures to be |0〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(b) Suppose
∣∣ψ〉 = |+〉, then what is the probability that the top qubit measures to be |1〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(c) Suppose
∣∣ψ〉 = |−〉, then what is the probability that the top qubit measures to be |0〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(d) Suppose
∣∣ψ〉 = |−〉, then what is the probability that the top qubit measures to be |1〉? If

non-zero, what is the state of the bottom qubit, given this measurement outcome?

(e) Suppose
∣∣ψ〉=p

1−ϵ|+〉+p
ϵ|−〉 for some small ϵ, i.e., a slight perturbation from |+〉. Then

what is the probability of measuring |0〉 for the top qubit?

3 Sharing Entanglement

Entanglement is one of the most powerful yet elusive properties in quantum computing. In
lectures, we have studied entanglement between two parties, such as Alice and Bob. We saw
how to use entanglement to accomplish something like quantum teleportation. The concept
of entanglement can be generalized to three parties or more. In this question, we will explore
what does it mean for more qubits to be entangled.

Task 3.1 (6 pts)

Suppose Alice, Bob, and Carol each holds on to one of the three qubits in the quantum state∣∣ψABC
〉

, respectively. For each of the following scenarios of
∣∣ψABC

〉
, first answer whether or not∣∣ψABC

〉
is entangled (i.e., is it not possible to write

∣∣ψABC
〉 = ∣∣ψA

〉⊗ ∣∣ψB
〉⊗ ∣∣ψC

〉
), then write

down what is the joint state of Alice and Bob’s qubits after Carol measured her qubit (condi-
tioned on her measurement outcome). Finally, does Carol’s measurement breaks the entangle-
ment between Alice and Bob? Answer whether Alice’s qubit and Bob’s qubit are still entangled,
if not, write down the product form

∣∣ψA
〉⊗ ∣∣ψB

〉
.

(a) “GHZ state”:
∣∣ψABC

〉= 1p
2
|000〉+ 1p

2
|111〉

(b) “W state”:
∣∣ψABC

〉= 1p
3
|001〉+ 1p

3
|010〉+ 1p

3
|100〉

Task 3.2 (10 pts)

Suppose Alice lives in Chicago, Bob lives in Los Angeles, and Carol lives in New Haven. They can
communicate by classical channels (such as sending classical bits via phone calls or radio sig-
nals) as well as quantum channels (such as sending qubits implemented by photons via optical
fibers). One day, all quantum channels broke down... So they have to resort to using quantum
teleportation for communicating qubits. Fortunately, right before the breakdown, Alice pre-
pared two EPR pairs; she sent one of the qubit in the first EPR pair to Bob and one of the qubit
in the second EPR pair to Carol. However, Bob and Carol do not share entangled qubits with
each other before the breakdown. In this case, are we able to make an EPR pair shared between
Bob and Carol despite having no quantum channel between them?
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(a) Describe how you would accomplish this in fewer than five sentences.

(b) Complete the quantum circuit below to implement your algorithm. Note that no multi-
qubit gates are allowed across different people’s qubits after the breakdown point. Some
qubits are initialized for each person; you do not have to use all of them.

|0〉
Breakdown

|0〉
Bob |0〉

|0〉 H •

|0〉
EPR pair

|0〉
Alice |0〉

|0〉
|0〉 H •

|0〉
EPR pair

Carol
|0〉
|0〉
|0〉





4 Gate Equivalences

Task 4.1 (12 pts)

For the following sequences of gates, give their single gate equivalents. Write your answers using
gates from the following set, with an appropriate phase factor:

{I , X ,Y , Z , H ,S,S†,T,T †}.

For example, −Z or e iπ/16Y are valid answers. For reference, we list the gate definitions here:

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H = 1p

2

[
1 1
1 −1

]
,

S =
[

1 0
0 i

]
,S† =

[
1 0
0 −i

]
,T =

[
1 0
0 e iπ/4

]
,T † =

[
1 0
0 e−iπ/4

]
(a) X Y Z

(b) H Z H Z

(c) T X T †X

(d) T Z T †Z

(e) SX S†

(f) S†(T H)Z (T H)†
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Task 4.2 (⋆ pts)

For the following scenarios of U , solve for a V such that the circuit equality holds. Write your
answers using gates from the following set, with an appropriate phase factor:

{I , X ,Y , Z , H ,S,S†,T,T †,CNOT0,1,CNOT1,0,SWAP0,1}.

Note that at most one gate per qubit is allowed. For example, −(Z0X1) is a valid answer. To
avoid ambiguity, we use subscripts to indicate the qubit that the gate acts on. For example,
Z0(HS)1 = (Z ⊗H)(I ⊗S) and CNOT0,1 has a control qubit q0 and a target qubit q1.

q0
U

•
q1

=
q0 •

Vq1

(a) U = X0I1

(b) U = I0X1

(c) U = X0Z1

(d) U = (Z X )0I1

(e) U = SWAP0,1

PROGRAMMING PORTION

This portion of the assignment has a total of 51 points.

5 Quantum Compiler

In lectures, we explored the circuit synthesis problem in quantum computing. We saw how an
arbitrary multi-qubit unitary can be decomposed into one- and two-qubit gates. A quantum
compiler, however, does much more. In this assignment, you will build parts of a mini quan-
tum compiler that handles: register selection and concatenation (for grouping and composing
qubits), register allocation (for initializing new qubits/cbits), module flattening and mapping
(for turning nested modules into a flat, hardware-indexed gate sequence).

Why does this matter? Real devices have constraints, such as limited qubit count, connec-
tivity, and gate set. The job of a compiler is to bridge logical circuits and physical hardware by
choosing registers, mapping qubit indices, and restructuring circuits while preserving behavior.

What is a register? A quantum register is an ordered list of qubits used by a circuit. When
running on a hardware, each logical qubit in the register must be mapped to a physical hard-
ware qubit. To keep this assignment focused, we will ignore quality/fidelity/connectivity pref-
erences in the selection of physical qubits, and simply prefer lower-index hardware qubits when
we have a choice.

Like in Assignment 1, we will use QuantumRegister and ClassicalRegister data models.
Importantly, a QuantumRegister tracks: size (number of qubits), array (list of qubit indices),
new_q (Boolean list aligned with array, marking which qubits are newly created in the current
context as opposed to references to existing qubits). A ClassicalRegister analogously tracks
new_c. One of your tasks is, for example, to understand how could new_q and new_c help a
compiler decide when to allocate versus reuse qubit resources, or when to free ancillary qubits.
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Task 5.1 (12 pts)

Implement the following in QuantumRegister (and analogously in ClassicalRegister):

• select(self, ids): it takes as input ids (list of integer positions into self.array) and
returns a new QuantumRegister containing only the qubits at those positions, preserving
order.

– Note: size, array, new_q of the returned object must reflect the selection.

– Exception: If ids is empty, raise Exception(’ids must be non-empty!’).

– Hint: please read carefully the new __init__ definition for the QuantumRegister for
information about different ways to initialize a quantum register.

– Example: if self.array == [0,2,4,5], then select([1,3]) returns a register with
array == [2,5] and the corresponding new_q entries for positions 1 and 3.

• __add__(self, other): it concatenates two quantum registers, returning a new register
whose array is self.array + other.array.

– Assume: No overlapping indices across the two input registers.

– Note: size, array, and new_q must be correctly updated.

– Example: if self.array == [0,3] and other.array == [1,4], then __add__ is ex-
pected to return a register with array == [0,3,1,4].

Why this matters: Selection lets modules slice registers; concatenation lets modules com-
pose them. They are two essential compiler operations.

Task 5.2 (6 pts)

When writing a quantum program, it is convenient to call a function that contains a subcircuit.
This new subcircuit might want to reuse some qubits from the current function but also request
fresh ones. Let’s see how we can support this in our compiler.

In QuantumCircuit, implement allocate(self, ids, new) that builds the registers for a
new quantum circuit (sub)module:

• Inputs: ids (positions into the current register’s existing self.qubits to reuse) and new
(non-negative integer as the number of new qubits and new cbits to allocate after the
reused ones).

• Output: (qreg, creg), a tuple of QuantumRegister and ClassicalRegister where the
selected existing qubits appear first, followed by the newly allocated ones.

• Hints: you might want to reuse the select function from Task 5.1. Also, ensure the new_q
and new_c flags correctly mark only the appended items as “new”.

The next Task 5.3 is a synthetic quantum program for you to test the implementation of allocate.
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Task 5.3 (⋆ pts)

Use the provided synthetic_algo() to test your allocate, select, and __add__ imple-
mentations. It builds a circuit with repeated, nested modules as shown in Figure 1. Notice that
there are repetitive modular structures in the circuit, indicated by the dashed lines. The pro-
gram should print as a structured, properly indented QASM format. What to check:

• Register sizes at each module boundary (at line Qreg: x, Creg: y)

• Indentation showing module nesting

• Qubit indices within each indented module refer to their ids in local register.

• Reused vs new qubits align with your new_q flags

• For reference, the example output is provided below:

======<CPSC 447/547 QASM>======
Qreg: 4, Creg: 4
h qreg0 ,
h qreg1 ,
h qreg2 ,
h qreg3 ,
module qreg0 qreg1 , creg0 creg1

Qreg: 3, Creg: 3
cx qreg0 qreg0 ,
cx qreg1 qreg0 ,
cx qreg1 qreg0 ,
tdg qreg0 ,
module qreg1 , creg1

Qreg: 2, Creg: 2
t qreg1 ,
cx qreg1 qreg0 ,
cx qreg0 qreg1 ,

module qreg2 qreg3 , creg2 creg3
Qreg: 3, Creg: 3
cx qreg2 qreg0 ,
cx qreg3 qreg2 ,
cx qreg3 qreg0 ,
tdg qreg2 ,
module qreg3 , creg1

Qreg: 2, Creg: 2
t qreg3 ,
cx qreg3 qreg0 ,
cx qreg0 qreg3 ,

===============================

Task 5.4 (10 pts)

In this task, you will learn how to use entanglement as a resource to perform remote gate be-
tween distant qubits. Suppose Alice and Bob each has a qubit and they would like to perform
a CNOT gate between them, but they are too far away physically to perform the gate directly.
Fortunately, they have shared a copy of the EPR state,

∣∣ψAB
〉 = 1p

2
(|00〉+ |11〉) prior to the ex-

periment. Now our goal is to help Alice and Bob implement the quantum programs for them to
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USER PROGRAM

Figure 1: An example quantum circuit for synthetic_algo(). This is provided in A2.py for testing, as described
in Task 5.3. The dashed lines in the quantum circuit indicate the boundaries of a module. “Ancilla” qubits are
scratch qubits initialized and used within a module and are not accessed from outside the module.

run locally to realize this CNOT gate remotely. Implement the quantum program for a remote
(teleported) CNOT gate in A2.py.

Implement remoteCNOT() in A2.py using the 4-qubit circuit pattern in Fig. 2. In the pro-
vided function, we have initialized q1 and q2 in the EPR state

∣∣q1q2
〉= 1p

2
(|00〉+ |11〉). Then we

create a quantum register containing q0, q1 for Alice and create a quantum register containing
q2, q3 for Bob. From this point, Alice will not have access to Bob’s qubits and vice versa.

• Build alice_qc and bob_qc (local subcircuits only on their own registers).

– Use alice_local() and bob_local() to perform their local gates and measurements.

– After the measurements, build a shared ClassicalRegister containing both parties’
outcomes

– Then they each perform a local update in alice_update() and bob_update() re-
spectively.

• Hint: Use conditional(self, cbits, gate, qubits) for updates. For example, the
operation qc.conditional([0,1], ’x’, [2]) applies X gate to qubit indexed at [2] if
the cbits stored at indices [0,1] are both True. When printed in QASM, these appear as
’x_if’ or ’z_if’, etc.

• For reference, your QASM printout for remoteCNOT() should match the following example
(order and indentation matter):

======<CPSC 447/547 QASM>======
Qreg: 4, Creg: 4
h qreg1 ,
cx qreg1 qreg2 ,
module qreg0 qreg1 , creg0 creg1
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𝑍
𝐶𝑋!,#(|𝜓!⟩ ⊗ |𝜓#⟩)

|0⟩

|𝜓!⟩

|0⟩ 𝐻 𝑋

𝑍

𝑋
EPR State

q0

q1

q2

alice_local

bob_local

|𝜓#⟩q3 𝐻 𝑍

𝑍

alice_update

bob_update

qreg: {q0, q1}, creg: {c0, c1}

qreg: {q2, q3}, creg: {c2, c3}

qreg: {q0, q1}, creg: {c0, c1, c2, c3}

qreg: {q2, q3}, creg: {c0, c1, c2, c3}

Figure 2: Remote CNOT gate between Alice and Bob, using a pre-generated EPR pair. In this modular program, Al-
ice never accesses Bob’s qubits and Bob never accesses Alice’s. This can be seen from the fact that Alice’s subcircuits
use a quantum register containing only {q0, q1}. Similarly, Bob’s quantum register has only {q2, q3}. In con-
trast, a shared classical register containing {c0, c1, c2, c3} are used for both alice_update and bob_update.

Qreg: 2, Creg: 2
cx qreg1 qreg0 ,
measure qreg0 , creg0

module qreg2 qreg3 , creg2 creg3
Qreg: 2, Creg: 2
cx qreg2 qreg3 ,
h qreg3 ,
measure qreg3 , creg1

module qreg0 qreg1 , creg0 creg1 creg2 creg3
Qreg: 2, Creg: 4
x_if qreg1 , creg0
z_if qreg1 , creg3

module qreg2 qreg3 , creg0 creg1 creg2 creg3
Qreg: 2, Creg: 4
x_if qreg2 , creg0
z_if qreg2 , creg3

===============================

Task 5.5 (8 pts)

Next, we will consider the qubit mapping problem in a quantum compiler. In the setup, Backend
is a class containing information about the quantum hardware, including number of qubits
(num_q), number of qubits that have already been allocated (in_use), a list of all qubits (all_qubits),
a Backend name (label), and a Boolean indicator: if variable == True, the backend has in-
finite size and if variable == False, the backend has a fixed, finite size.

In Backend, implement alloc(self, n) that assigns available hardware qubits.

• Input: It takes as input n, a (non-negative) integer for the number of new qubits to allocate.

• Output: Update the internal fields of Backend, including its num_q, in_use and all_qubits,
and return a list of n indices for those new qubits just allocated.

• Note: Assume n is non-negative; if n == 0, it should return [] and make no changes.

• Note: Lower-indexed qubits should be allocated first.
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• Exception: if variable == False (finite hardware) and (in_use + n) exceeds num_q,
raise Exception(’Allocation error: not enough qubits!’).

Task 5.6 (15 pts)

In QuantumCircuit, implement compile_fully_connected(self, backend, qubits_mapping,
cbits_mapping) to perform code flattening and qubit mapping on the input modular pro-
gram.

• Input: backend (the target hardware, assumed to be fully connected where gates between
any qubits are allowed), qubits_mapping (an optional dict mapping for indexing qubits
{logical_qubit_idx -> backend_qubit_idx}, and cbits_mapping (optional mapping
for indexing classical bits).

• Output: It returns a flat list of gates (here “flat” means no sub-circuits) acting on qubits
mapped to their backend indices.

• Exception: Raise Exception(’Backend too small!’) if the number of qubits needed in
the circuit exceeds that of the backend.

• Note: If qubits.new_q[i]==True, call [qubit_idx]=backend.alloc(1) to obtain a fresh
hardware index, then set both qubits_mapping[i] = qubit_idx and cbits_mapping[i]
= qubit_idx to that index. You can assume that qubits_mapping and cbits_mapping
are consistently indexed. However, a separate cbit_mapping is used for indexing classi-
cal register, because the size of a quantum register can be different from that of a classical
register, as seen in Task 5.4.

• Hint: Additional instructions can be found in the starter codes A2.py. What to implement:
In Task 5.6.1, you will first allocate qubits to ensure each (logical) qubit has a properly as-
signed physical hardware index. Then in Task 5.6.2, you will traverse the modules and
recursively flatten the circuits, translating their gates to operations acting on mapped in-
dices.

• For reference, the expected output of compile_fully_connected() for the quantum cir-
cuit in Task 5.3 is the following:

======<CPSC 447/547 QASM>======
Qreg: 8, Creg: 8
h qreg0 ,
h qreg1 ,
h qreg2 ,
h qreg3 ,
cx qreg0 qreg4 ,
cx qreg1 qreg0 ,
cx qreg1 qreg4 ,
tdg qreg0 ,
t qreg1 ,
cx qreg1 qreg5 ,
cx qreg5 qreg1 ,
cx qreg2 qreg6 ,
cx qreg3 qreg2 ,
cx qreg3 qreg6 ,
tdg qreg2 ,
t qreg3 ,
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cx qreg3 qreg7 ,
cx qreg7 qreg3 ,
===============================

And the expected output for remoteCNOT().compile_fully_connected() in Task 5.4 is
the following:

======<CPSC 447/547 QASM>======
Qreg: 4, Creg: 4
h qreg1 ,
cx qreg1 qreg2 ,
cx qreg1 qreg0 ,
measure qreg0 , creg0
cx qreg2 qreg3 ,
h qreg3 ,
measure qreg3 , creg3
x_if qreg1 , creg0
z_if qreg1 , creg3
x_if qreg0 , creg0
z_if qreg0 , creg3
===============================

Task 5.7 (⋆ pts)

Upgrade your compiler to respect a hardware backend that is not fully connected. Note that you
can still assume that the backend is connected (that is no disconnected groups of qubits). This
means we need to update our definition of Backend to include hardware topology information,
and then implement a procedure to resolve the connectivity constraints. The goal is to ensure
every two-qubit gate (e.g., cx(u, v)) acts on a connected pair of qubits. When u,v are not
adjacent, route via SWAPs: 1. Bing qubits together along a shortest path: swap neighbor pairs
until the control/target are adjacent. 2. Apply the intended two-qubit gates. 3. Swap back to
restore original qubit placements.

• In Backend, it should now include adj_matrix: np.ndarray (with shape num_q×num_q),
representing the adjacency matrix of an undirected connectivity graph between qubits in
the backend. For a variable (infinite) backend, you may set adj_matrix = None and treat
them as fully connected.

• Output: compile() returns a list of gates, where every two-qubit gate acts only on a pair
of qubits that are connected.

• Example: cx(0,3) on the backend shown in Figure 3 acting on qubits that are not directly
connected. So it should be translated to the following sequence of gates:

1. Swapping one of the qubit to be next to the other qubit. For instance, apply swap(0,1),
then swap(1,2).

2. Apply the two qubit gates on the connected qubits. In our example, cx(2,3).

3. Finally, swapping the qubit back to its original location. For instance, apply swap(1,2),
then swap(0,1).

• Note: since swap(a,b) gate is not part of the instruction set in QuantumCircuit, it must
be implemented using CNOTs (e.g., cx(a,b); cx(b,a); cx(a,b)) the cx gates to imple-
ment it. You can assume that the original program does not contain any three-qubit gate,
e.g., toffoli.
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0 1 2 3 
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


Figure 3: An example backend of 4 qubits (left) and its adjacency matrix (right). Here cx(0,3) cannot be per-
formed directly, because qubit 0 and qubit 3 are not connected.
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