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Mathematical Model of Quantum Systems

Four Principles to model guantum systems mathematically:

1. Superposition:

The state of a qubit is a unit complex vector in the two-dimensional Hilbert Space.
2. Composition:

The joint state of many (independent) guantum systems is the tensor product of component states.
3. Transformation:

Time evolution of a quantum system is a unitary process.

4. Measurement:
Measuring a quantum state causes its superposition to collapse/project to one of its basis states randomly.

Von Neumann: “In mathematics, you don’t understand things. You just get used to them.”
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Superposition State of A Qubit

The state of a qubit is represented by a unit vector in the two-dimensional complex vector space (Hilbert Space C?).
In the Dirac notation:

) = al0) + B11) = [

where a, § € C, satisfying that its 2-norm: |a|? + |B]? = 1.

Here, @ and (8 are called the probability amplitudes on the (classical) basis, |0) and |1), respectively.

(can be negative, even complex numbers)
0.6 1 L 11
&P v =06l0)—0.81) = D v=——0+—=n=—]

‘ |0) = l(l)] . 1) = l(l)] Not vaIid::llIO) +Ei|1) = 1//;]



Vector Spaces

Vector space: a (special) set of vectors. Algebra: that allows us to take linear combinations.
. - Cap
Example: Position vectors for points on a 2D surface. * Scalar multiplication: ¢ - a = [Call for some c € R
R?: Two-dimensional real vector space . I ap+ b
P * \ector addition:a + b = [ao + bO]
1 1

Position on a flat surface: X-y plane

Surface of a sphere: Longitude-latitude “Vectors after algebra remain in the same space.”

o (X0, ¥0)

R™: n-dimensional real vector space:

all vectors with n real components: a = e R"

Two real-valued coordinates.



More about Vectors

a’: Transpose of a
Properties (derive on board):

. . N aO
* Length of a vector (as in £,-norm orEuclidean norm): a = lal]

lall? = a"a

a

* Angle between two vectors: a = [a

(1)]and5=

Hilbert space: inner-product vector space. Do they work for complex vectors?
* Well-defined “geometry” (incl. length and angle).



What about Complex Vectors?

A complex number a € C is of form: Can we use the same definition for length and angle?
I Imaginary component * Length:
""" PSRN ST= _ 11=12
a =ag +Haqgi a"a = |lall3

J Real component * Angle: B B
Where ag,a; € R and i% = —1. a’v = |lall - ||| cos @
A vector in a two-dimensional complex vector space: What could be problematic?

240
_ 2
|¢> o CZJ €C Example: Length of |y) = [ﬂ?



Complex Numbers

A complex number «a € Cis of form: @ = ay + a;i, where ag,a; € R and i? = —1.

Complex Plane:

Im(a)

— ) :
/ a 2 & =g tagi=r1-¢'
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Cartesian coordinate (ag, a;) : (real, imaginary)
a=ag+ aql

Euler’s formula ¢'® = cos 8 + isin 6

Polar coordinate (7, 0) : (magnitude, phase)
a=1rcos@ +rsin@i=r-e? “length”  “angle”
“Length”: Magnitude r = |a| = [ag + a? = Va*a

“Angle”: Complex phase 8 = arctan%
0

Notation: a™ is the complex conjugate of o
a*=ag—a1i =r-e

—i0




Qo
For a quantum state |{)) = lal] ;

Back to Complex Vectors What are ({1 (O[w) and (1[)?

Algebra:

o Cy Dirac Notation:
 Scalar multiplication: ¢ - [Y) = lcall for some ¢ € C

T — T __ * *
e Vector addition: |1) + |@) = [ZO ig(’] <1/TJ| = (DT =UP)" =[ap  a1]
1 1
Properties (derive on board): “Ket” “Bra” Adjoint of a vector: conjugate transpose
* Length of a vector: |¢) = O
)3 = a5 il ] - Wl W) = (Wl

Example: Length of |y) = [l] Inner product: “Bra-ket”

a
* Angle between two vectors:|i) = la(l)] and |@) = "[‘;0]
1

cos@ = [aj ai]- ["gi] > (Y- o) = (YPlp)



What about more qubits?

Two coins: ?i z Two qubits: a a
Pr(0,) = 0.36,Pr(1,) = 0.64  Pr(0g) = 0.5,Pr(1z) = 0.5 I,) = 0.6/0) + 0.8]1) e =L —Lyn
V2 V2
Assuming they are independent: Pr(0,05) = Pr(0,) - Pr(0p) Assuming they are independent: (0,05 |Wag) = (04|W4) - (Og|Yg)
Pr(0,05) = 0.36- 0.5, Pr(0,15) = 0.36 - 0.5, [Wag) = 0.6 - i|00) — 0.6 i |01) + 0.8 .i|10> ~08 .i|11>
Pr(1,05) = 0.64-0.5,  Pr(1,15) = 0.64 - 0.5, 5 V2 V2 V2 V2

We use a “joint state” to fully characterize the system:

Tensor product: o ) [ 0.6-1/V2 ] 0405)
036 . l0.5 0.36 - 0.5] Pr(0:05) N 75| 0

[0.36] R [0.5 _| 0.5/ _10.36 - 0.5] Pr(0s1s) [0.6] ®[ 1/V2 _|-0.6" 1/v2
0.641 = lo.5l ™ 64.[0.5 0.64 - 0.5 pr(1,0,) 8l " [-1/V2 0.8-1/V2 |1140)
| 0.51]  10.64 - 0.5] pr(1,1) —0.8-1/v2l 1)




High-Dimensional Complex Hilbert Space

The joint state of n qubit is a 2"*-dimensional complex vector in the Hilbert Space H, described by complex numbers,
a; € C, fori € {0,1}", satisfying that its 2-norm: Zie{o,l}n|ai|2 = 1. In the Dirac notation:

[X00...0]
@00...1 o
|l/)> = aoo___ol()() O) + 0(00_.1|00 1) + -+ all___1|11 1) = . eH =C

| X11..1.

[00...0]

a

Inner product: (YY) = [ago.0 @500 -~ @ool| 27| = Dicfon @i a; =1 Normalized.
| X11..1.

This is a linear combination over 2™ basis states: |00 ...0),|00 ... 1), ..., |11 ... 1).



Change of Basis?

' ly) = 0.6/0) + 0.8]1)

Derive on board:

15
|0) = — 7D p I
Standard basis: { :8: |l/}> . +) + . =)
11) = 1.
Define an alternative basis: What about the following basis for |)?
() =10y + = 11) v = 10) + il1)
V2 V2
| . Iw) = 0) — 1)
—)=—[0) ——=I1)
L =) 2| ) >

V2 V2 What are the criteria for a “good” basis?



Orthonormal Basis

Span: A set of vectors |vy), |v1), ..., |v,—1) Spans the vector space S, Orthonormal basis:
if for any vector |w) € S, there exists ay, ..., &1 € C: * Length: A set of unit vectors
lw) = a0|v0) + aq|v) + o+ a1 |vp_q) * Angle: mutually orthogonal
~ A - 1, if j = k (unit length
Linear combination (with complex coefficients) _ 1 ( gth)
(vjlve) =
0, if j # k (orthogonal)

Linear dependence: A set of (non-zero) vectors are linearly

dependent if there exists ay, ..., @1 not all zero: Examples: two-qubit basis

0 =aylvy) + alvy) + -+ ap_1|v,-1) 1 0 0 0
_ 10 _ 11 _ |0 _10
0 10 0 1
Basis: /inearly independent vectors spans the vector space S. ]
1 1 1 1
_1 _ 1= 111 _1-
1 -1 -1 1

|+) & [+)



The Process of Evolving a Probabilistic State

A Markov Process is a stochastic process over a state space S such that:
Pr[Si11 = 5'|St = 5,S¢21 = S¢—1, -, So = Sol = Pr[S¢4q = 5'|S; = 5]
For all state s; € S at time t.

Eight possible states (s € S): A transition matrix to fully
- haracterize the process.
0 Silently lost ¢
Transition probability (from s to s'): POV FROM
Pr(Si4q = 5'[S; = s] 1 ®@@ Zen absorber 000 001 010 011 100 101 110 111
000[0.5 0.2 0.25 '
2 @@@ Eager-but-lost 001(0.3 0.5 0.3 0.25
Example: 010(0.2 0.5 0.2 0.25
. i 3 05 05 0.3
A 3-bit Markov Model for CPSC 4470 student: 3 (®@ @) Classroom king = bt B 05
4 ®OQ voomscrolig @
(P) Phone out? (0 = away, 1 = out) 1l 01 025 025 05
5 P)D@) overconfident texter
Discussing? (0 = quiet, 1 = participating) Col-k, Row-j of the matrix:
® 6 ®O®W Clueless chaos 1k, j] = Pr{Sess = kIS, = J]
. * Non-negative elements.
(U) Understanding now? (0 = lost, 1 = get) 7 ®®W Mythical Multitasker g e



The Process of Evolving a Probabilistic State

Three stages of the class:

Output Input
state Ty: “Staying engaged” state
Probabilistic mixture of possible states: gé gg gé 0 0.25 025 ] (1’
02 05 02 o0z 0
0 Silently lost ) } 03| __ 03 0.5 0.5 0.3 0
@O0 e[S, = 0 - o :
0
1 ®@@ Zen absorber PI'[St — 1] o1 0.5 s 0.2 0
n
2 ®@@ Eager-but-lost PI‘[St = 2] 01 025 025 0.5
PI‘[S _ 3] Tl: ”Drifting"
3 ®@@ Classroom king p—> — t — 10.22] (0.6 0.2 0.2 0.2 ] 0.2
+ ®O0 | L Pr[s, = 4] 046 02 06 04 0z 05
Doomscrolling . . : : .
Pr[S; = 5] 047) 01 02 04 0.2 03
5 ®@@ Overconfident texter Pr[St = 6] ' 0.1 07 g'i 0.2 0
0.1 0.6 0.2 0
6 P)@@) Clueless chaos | Pr[S; = 7] 02 02 04 -0
7 ®@®@U) Mythical Multitasker T,: “Fatigue + bounce back”
10.1925] 0.4 0.2 0.25 1 10,221
0.4475 04 06 02 03 025 0.25 0.46
. I 0.128 _ 05 0.2 . 0.1
Evolution of probabilistic state: 02071 1°% 02 o3 of s 0.17
n. - =T.7. 002 | = 0.4 0.15 * 005
Pe+r = TPt 0.005 0.1 05 0.2
0.5
Transition matrix - : : 025 025 0.5



The Process of Evolving a Superposition State

Superposition of possible states:

®00...0
®00..1

hPt)==

d11..1

Evolution of superposition state:

Y1) = U - |Yy)

Unitary matrix

Output

state
-1

S =

N -

. .
e e

Uy=HRIRI
r1 1
1 1
1
1 1
V2|1 -1
1 -1
1
1
Uy=IQHKRI
"1 1
1 1
1 -1
1 1 -1
NG 1
1
1
1
U, =1QTIRQH
11
1 -1
1 1
1 1 -1
V2 1 1
1 -1

Apply three quantum gates:

<l

Input

N =

state

r
OO0 OO0 OO

1
[EnN




Geometry-Preserving Transformations

Inner product gives the length and angle of vectors:
T
Real vectors: v; vy Complex vectors: (vj|vk)
Transformations that preserves “geometry”: lengths and angles.

e Orthonormal basis stays orthonormal.
* Shapes don’t get stretched.

Orthogonal Matrix Unitary Matrix
Definition QTQ =1 Uty =1
Inverse Q-1 =0T u-t=yt
Columns Real orthonormal vectors Complex orthonormal vectors
Example 2D rotation matrix Quantum gates

Principle #3: Transformation
(More details in Lecture 5.)



Derive on board:
. . . 00
Understanding Projections My = 25, What s /)7

Principle #4: Measurements
(More details in Lecture 6.)

Projection (as a “linear operator”: mapping from one vector space to another)

Example: Projecting |y) onto the line direction of |x).
3D object casting shadows onto 2D plane. ly)

Projected state: [p) =7

Projection is a matrix: Outer product: a matrix

|ac)(x|
|p) = My ly), I, = x

|x) ™~ Inner product: a scalar
Properties:

1. IIis symmetric. (Hermitian: 1T = 11)

2. Project twice is the same as once. ([17 = )

Image credit: Peter Hermes Furian / Alamy Stock

Yale
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Hermitian Matrix in QM

Symmetric matrix (real): Derive on board (Pauli Matrices):
ST =S5 0 ] Standard basis!

“« . ” 1
Pauli Z operator” g, = [O 1 {|0),]1)}
Hermitian matrix (complex): -
Ht'=H * Eigenvalues: 1 = 1land A, = -1
0

* Eigenvectors:|vy) = [(1)] and |vy) = lll

* Hermitian matrix has real eigenvalues. \

* Corresponding to physical observable “Pauli Y operator” gy = lO —L {I+1),1=1)} basis!
with real-valued quantity. Why? _ i 0
* Eigenvalues: o =1land 4; = =
 Eigenvectors:|vy) = \/—15[1] and |vy) = \/—15[_1]
Eigenvalue equation for a linear operator A: | 0 l 1 {Il+) )} basis!
- “p i X tor” — | — asis:
A|vj) _ /1j|77j) au.l operator” oy = |,
where |vj) is the (non-zero) eigenvector, * Eigenvalues: 4o =1and 4; = =
and A; is a complex number known as the eigenvalue.  Eigenvectors:|vy) = \/—15 lﬂ and [v;) = \/—15 l_ll]



Spectral Theorem

For a linear operator that is normal (ATA = AAT), we can write it in the spectral decomposition:

A= Z A viNv|

where /A; are the eigenvalues, and |vj) are the corresponding (orthonormal) eigenvectors.

Examples:

:[(1) _01]=(+1)|0)(0|+(—1)|1)(1| ox = (1) (1) = (+D[H)(+ + (=D=M~

Applications:
e Power of a matrix:

= (Z ,1]-|vj)(vj|>8 = Zlflvj)(”ﬂ Example:

. . . i
9% = el0)0l +e Pl = ¢ O]

* Exponential of a matrix: o

i ki = Z e v;)v;|
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