
Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

CPSC 4470/5470

Mathematical Tools
for Quantum Computing



Mathematical Model of Quantum Systems
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Four Principles to model quantum systems mathematically:

1. Superposition:
The state of a qubit is a unit complex vector in the two-dimensional Hilbert Space. 

2. Composition:
The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:
Time evolution of a quantum system is a unitary process.

4. Measurement:
Measuring a quantum state causes its superposition to collapse/project to one of its basis states randomly.

Von Neumann: “In mathematics, you don’t understand things. You just get used to them.”



Superposition State of A Qubit
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The state of a qubit is represented by a unit vector in the two-dimensional complex vector space (Hilbert Space ℂ2). 
In the Dirac notation:

𝜓 = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

where 𝛼, 𝛽 ∈ ℂ, satisfying that its 2-norm: 𝛼 2 + 𝛽 2 = 1.

𝜓 = 0.6 0 − 0.8 1 =
0.6

−0.8

0 =
1
0

1 =
0
1

Here, 𝛼 and 𝛽 are called the probability amplitudes on the (classical) basis, 0  and |1⟩, respectively.

(can be negative, even complex numbers)

𝜓 =
1

2
0 +

𝑖

2
1 =

1

2

1
𝑖

Not valid: 
1

4
0 +

𝑖

2
1 =

1/4
𝑖/2

 



Vector Spaces

Example: Position vectors for points on a 2D surface.
 ℝ2: Two-dimensional real vector space
        

Position on a flat surface: X-y plane

ℝ𝑛: n-dimensional real vector space: 

all vectors with n real components: റ𝑎 =

𝑎0

𝑎1

⋮
𝑎𝑛−1

∈ ℝ𝑛

Algebra: that allows us to take linear combinations.

• Scalar multiplication: 𝑐 ⋅ റ𝑎 =
𝑐𝑎0

𝑐𝑎1
 for some 𝑐 ∈ ℝ

• Vector addition: റ𝑎 + 𝑏 =
𝑎0 + 𝑏0

𝑎1 + 𝑏1

Vector space: a (special) set of vectors.

“Vectors after algebra remain in the same space.”Surface of a sphere: Longitude-latitude 

𝑥0, 𝑦0

𝑥1, 𝑦1

𝑎0, 𝑏0

𝑎1, 𝑏1

Two real-valued coordinates.



More about Vectors

Properties (derive on board):

• Length of a vector (as in ℓ2-norm or Euclidean norm): റ𝑎 =
𝑎0

𝑎1

റ𝑎𝑇: Transpose of റ𝑎

Do they work for complex vectors?Hilbert space: inner-product vector space.
• Well-defined “geometry” (incl. length and angle).

• Angle between two vectors: റ𝑎 =
𝑎0

𝑎1
 and 𝑏 =

𝑏0

𝑏1
Inner product of റ𝑎 and 𝑏: റ𝑎𝑇𝑏

റ𝑎

𝑏

𝜃

Origin: 
0
0

റ𝑎 2
2 = റ𝑎𝑇 റ𝑎

റ𝑎 ⋅ 𝑏 cos 𝜃 = റ𝑎𝑇𝑏

റ𝑎

𝑎0

𝑎1



What about Complex Vectors?

A complex number  𝛼 ∈ ℂ is of form:
 

𝛼 = 𝑎0 + 𝑎1𝑖

Where 𝑎0, 𝑎1 ∈ ℝ and 𝑖2 = −1.

Can we use the same definition for length and angle? 
• Length: 

റ𝑎𝑇 റ𝑎 = റ𝑎 2
2

• Angle: 

റ𝑎𝑇𝑏 = റ𝑎 ⋅ 𝑏 cos 𝜃

What could be problematic? 

Example: Length of 𝜓 =
1
𝑖

?

A vector in a two-dimensional complex vector space:

𝜓 =
𝛼0

𝛼1
∈ ℂ2

Real component

Imaginary component



Complex Numbers

Complex Plane:

Euler’s formula 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

“Length”: Magnitude 𝑟 = 𝛼 = 𝑎0
2 + 𝑎1

2 = 𝛼∗𝛼

“Angle”: Complex phase 𝜃 = arctan
𝑎1

𝑎0

Cartesian coordinate (𝑎0, 𝑎1) : 
𝛼 = 𝑎0 + 𝑎1𝑖

Polar coordinate (𝑟, 𝜃) : 

𝛼 = 𝑟 cos 𝜃 + 𝑟 sin 𝜃 𝑖 = 𝑟 ⋅ 𝑒𝑖𝜃

A complex number  𝛼 ∈ ℂ is of form: 𝛼 = 𝑎0 + 𝑎1𝑖, where 𝑎0, 𝑎1 ∈ ℝ and 𝑖2 = −1.

Notation: 𝛼∗ is the complex conjugate of 𝛼
𝛼∗ = 𝑎0 − 𝑎1𝑖

(real, imaginary)

(magnitude, phase)

𝛼 = 𝑎0 + 𝑎1𝑖

𝑎0

𝑎1

𝑅𝑒 𝛼

𝐼𝑚 𝛼

𝑟

𝜃

= 𝑟 ⋅ 𝑒𝑖𝜃

𝛼∗ = 𝑎0 − 𝑎1𝑖 = 𝑟 ⋅ 𝑒−𝑖𝜃

“length” “angle”



Back to Complex Vectors

Algebra: 

• Scalar multiplication: 𝑐 ⋅ 𝜓 =
𝑐𝛼0

𝑐𝛼1
 for some 𝑐 ∈ ℂ

• Vector addition: 𝜓 + 𝜑 =
𝛼0 + 𝛽0

𝛼1 + 𝛽1

Dirac Notation:

𝜓 = 𝜓 † = 𝜓 ∗ 𝑇 = [𝛼0
∗ 𝛼1

∗] 

“Bra” 

𝜓| ⋅ |𝜓

𝜓| ⋅ |𝜑

Inner product: “Bra-ket”

= 𝜓|𝜓

= 𝜓|𝜑

Adjoint of a vector: conjugate transposeProperties (derive on board):

• Length of a vector: 𝜓 =
𝛼0

𝛼1

• Angle between two vectors: 𝜓 =
𝛼0

𝛼1
 and 𝜑 =

𝛽0

𝛽1

“Ket” 

For a quantum state 𝜓 =
𝛼0

𝛼1
 :

What are 𝜓|𝜓  , 0|𝜓  and 1|𝜓 ?

𝜓 2
2 = 𝛼0

∗ 𝛼1
∗ ⋅

𝛼0

𝛼1

Example: Length of 𝜓 =
1
𝑖

cos 𝜃 = 𝛼0
∗ 𝛼1

∗ ⋅
𝛽0

𝛽1



��

What about more qubits?

Two qubits:

𝜓𝐴 = 0.6 0 + 0.8 1 𝜓𝐵 =
1

2
0 −

1

2
1

A B

We use a “joint state” to fully characterize the system:

𝜓𝐴𝐵 = 0.6 ⋅
1

2
00 − 0.6 ⋅

1

2
01 + 0.8 ⋅

1

2
10 − 0.8 ⋅

1

2
11

Tensor product: 

0.6
0.8

⊗
Τ1 2

− Τ1 2
=

0.6 ⋅ Τ1 2

−0.6 ⋅ Τ1 2

0.8 ⋅ Τ1 2

−0.8 ⋅ Τ1 2

Two coins:

Pr 0𝐴 = 0.36 , Pr 1𝐴 = 0.64

A B

0.36
0.64

⊗
0.5
0.5

=
0.36 ⋅

0.5
0.5

0.64 ⋅
0.5
0.5

=

0.36 ⋅ 0.5
0.36 ⋅ 0.5
0.64 ⋅ 0.5
0.64 ⋅ 0.5

Pr 0𝐵 = 0.5 , Pr 1𝐵 = 0.5

Pr 0𝐴0𝐵 = 0.36 ⋅ 0.5, Pr 0𝐴1𝐵 = 0.36 ⋅ 0.5,
Pr 1𝐴0𝐵 = 0.64 ⋅ 0.5, Pr 1𝐴1𝐵 = 0.64 ⋅ 0.5,

Pr 0𝐴0𝐵

Pr 0𝐴1𝐵

Pr 1𝐴0𝐵

Pr 1𝐴1𝐵

|0𝐴0𝐵⟩

|0𝐴1𝐵⟩

|1𝐴0𝐵⟩

|1𝐴1𝐵⟩

Assuming they are independent: Pr 0𝐴0𝐵 = Pr 0𝐴 ⋅ Pr 0𝐵 Assuming they are independent: 0𝐴0𝐵|𝜓𝐴𝐵 = 0𝐴|𝜓𝐴 ⋅ 0𝐵|𝜓𝐵



High-Dimensional Complex Hilbert Space

Inner product: 𝜓 𝜓 = 𝛼00…0
∗ 𝛼00…0

∗ … 𝛼00…0
∗

𝛼00…0

𝛼00…1

⋮
𝛼11…1

= σ𝑖∈ 0,1 𝑛 𝛼𝑖
∗𝛼𝑖 = 1

The joint state of n qubit is a 2𝑛-dimensional complex vector in the Hilbert Space ℋ, described by complex numbers,
𝛼𝑖 ∈ ℂ, for 𝑖 ∈ 0,1 𝑛, satisfying that its 2-norm: σ𝑖∈ 0,1 𝑛 𝛼𝑖

2 = 1. In the Dirac notation:

𝜓 = 𝛼00…0 00 … 0 + 𝛼00…1 00 … 1 + ⋯ + 𝛼11…1 11 … 1 =

𝛼00…0

𝛼00…1

⋮
𝛼11…1

∈ ℋ = ℂ2𝑛

Normalized. 

This is a linear combination over 2𝑛 basis states: 00 … 0 , 00 … 1 , … , 11 … 1 . 



Change of Basis?

𝜓 = 0.6 0 + 0.8 1

Standard basis:

Define an alternative basis: 

+ =
1

2
0 +

1

2
1

− =
1

2
0 −

1

2
1

Derive on board: 
𝜓 =  + + −? ?

What about the following basis for 𝜓 ?

𝑣 = 0 + 𝑖 1

𝑤 = 0 − 𝑖 1

What are the criteria for a “good” basis?

0 =
1
0

1 =
0
1



Orthonormal Basis

Span: A set of vectors 𝑣0 , 𝑣1 , … , 𝑣𝑛−1  spans the vector space 𝑆,
if for any vector 𝑤 ∈ 𝑆, there exists 𝛼0, … , 𝛼𝑛−1 ∈ ℂ :

𝑤 = 𝛼0 𝑣0 + 𝛼1 𝑣1 + ⋯ + 𝛼𝑛−1 𝑣𝑛−1

Linear dependence: A set of (non-zero) vectors are linearly 
dependent if there exists 𝛼0, … , 𝛼𝑛−1 not all zero:

0 = 𝛼0 𝑣0 + 𝛼1 𝑣1 + ⋯ + 𝛼𝑛−1 𝑣𝑛−1

Basis: linearly independent vectors spans the vector space 𝑆.

Linear combination (with complex coefficients)

Orthonormal basis: 
• Length: A set of unit vectors
• Angle: mutually orthogonal

𝑣𝑗|𝑣𝑘 =
1, if 𝑗 = 𝑘 (unit length)

0, if 𝑗 ≠ 𝑘 (orthogonal)

Examples: two-qubit basis

00 =

1
0
0
0

, 01 =

0
1
0
0

, 10 =

0
0
1
0

, 11 =

0
0
0
1

+ + =
1

2

1
1
1
1

, + − =
1

2

1
−1
1

−1

, − + =
1

2

1
1

−1
−1

, − − =
1

2

1
−1
−1
1

+ ⊗ +



The Process of Evolving a Probabilistic State

A transition matrix to fully 
characterize the process. 

A Markov Process is a stochastic process over a state space 𝑆 such that:
Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆0 = 𝑠0 = Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠

For all state 𝑠𝑡 ∈ 𝑆 at time 𝑡.

Transition probability (from 𝑠 to 𝑠′): 
Pr 𝑆𝑡+1 = 𝑠’ 𝑆𝑡 = 𝑠

Col-k, Row-j of the matrix:
𝑇 𝑘, 𝑗 = Pr 𝑆𝑡+1 = 𝑘|𝑆𝑡 = 𝑗
• Non-negative elements.
• Columns sum to 1.

0.5 0.2
0.3 0.5 0.3
0.2

0.3
0.5 0.2
0.5 0.5

0.25
0.25

 

0.25
0.3

0.5
0.5

 
0.2

0.15
0.1 0.25

 0.5
0.25 0.5

000    001    010    011    100      101        110      111
000
001
010
011
100
101
110
111

P

D

U

Example:
A 3-bit Markov Model for CPSC 4470 student:

Phone out? (0 = away, 1 = out)

Discussing? (0 = quiet, 1 = participating)

Understanding now? (0 = lost, 1 = get)

P D U

P D U

P D U

P D U

P D U

P D U

P D U

P D U

0

1

2

3

4

5

6

7

Eight possible states (𝑠 ∈ 𝑆):

Silently lost

Zen absorber

Eager-but-lost

Classroom king

Doomscrolling

Overconfident texter

Clueless chaos

Mythical Multitasker

FROM

TO



The Process of Evolving a Probabilistic State
Three stages of the class:

P D U

P D U

P D U

P D U

P D U

P D U

P D U

P D U

0

1

2

3

4

5

6

7

Silently lost

Zen absorber

Eager-but-lost

Classroom king

Doomscrolling

Overconfident texter

Clueless chaos

Mythical Multitasker

Input
state

Output
state

0.5 0.2
0.3 0.5 0.3
0.2

0.3
0.5 0.2
0.5 0.5

0.25
0.25

 0.25
0.3

0.5
0.5

 
0.2

0.15
0.1 0.25

 0.5
0.25 0.5

𝑇0: “Staying engaged”

0.6 0.2
0.2 0.6

0.2
0.4

0.2
0.1

0.6 0.2
0.2 0.4

0.2
0.2

 0.2
0.2

0.1 0.7 0.2
0.4  0.2

0.1
0.2

 
0.6 0.2
0.2 0.4

𝑇1: “Drifting”

0.4 0.2
0.4 0.6 0.2 0.3
0.2

0.2
0.5 0.2
0.3 0.5

0.25
0.25 0.25

 0.1
0.3

0.4
0.1 0.5

 0.15
0.2

0.25
 0.5

0.25 0.5

𝑇2: “Fatigue + bounce back”

0
1
0
0
0
0
0
0

0.2
0.5

0.3 = ⋅

0.2
0.5
0

0.3
0
0
0
0

0.22
0.46
0.1

0.17
0.05 = ⋅

0.22
0.46
0.1

0.17
0.05

0.1925
0.4475
0.128
0.207
0.02

0.005

= ⋅

𝑝𝑡 =

Pr 𝑆𝑡 = 0

Pr 𝑆𝑡 = 1

Pr 𝑆𝑡 = 2

Pr 𝑆𝑡 = 3

Pr 𝑆𝑡 = 4

Pr 𝑆𝑡 = 5

Pr 𝑆𝑡 = 6

Pr 𝑆𝑡 = 7

Probabilistic mixture of possible states:

Evolution of probabilistic state: 
𝑝𝑡+1 = 𝑇 ⋅ 𝑝𝑡

Transition matrix



The Process of Evolving a Superposition State
Apply three quantum gates:

Input
state

Output
state

1

2

1
1

1
1

1
1

1
1

1
1

1
1

−1
−1

−1
−1

𝑈0 = 𝐻 ⊗ 𝐼 ⊗ 𝐼

𝑈1 = 𝐼 ⊗ 𝐻 ⊗ 𝐼

𝑈2 = 𝐼 ⊗ 𝐼 ⊗ 𝐻

1
0
0
0
0
0
0
0

1

2

1

1 = ⋅

1

2

1

1

1

2

1

1

1

1

= ⋅

1

2 2

1
1
1
1
1
1
1
1

= ⋅

𝜓𝑡 =

𝛼00…0

𝛼00…1

⋮
𝛼11…1

Superposition of possible states:

Evolution of superposition state: 
𝜓𝑡+1 = 𝑈 ⋅ 𝜓𝑡

Unitary matrix

1

2

1
1

1
1

1
1

−1
−1

1
1

1
1

1
1

−1
−1

1

2

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

1

2

1

1

1

1



Geometry-Preserving Transformations

Orthogonal Matrix Unitary Matrix

Definition 𝑄𝑇𝑄 = 𝐼 𝑈†𝑈 = 𝐼

Inverse 𝑄−1 = 𝑄𝑇 𝑈−1 = 𝑈†

Columns Real orthonormal vectors Complex orthonormal vectors

Example 2D rotation matrix Quantum gates

Inner product gives the length and angle of vectors:

Real vectors: 𝑣𝑗
𝑇

𝑣𝑘 Complex vectors: 𝑣𝑗|𝑣𝑘

Transformations that preserves “geometry”: lengths and angles.
• Orthonormal basis stays orthonormal.
• Shapes don’t get stretched.

Principle #3: Transformation

(More details in Lecture 5.)



Understanding Projections

Projection  (as a “linear operator”: mapping from one vector space to another)

.

Example: 
3D object casting shadows onto 2D plane.

Projecting |𝑦⟩ onto the line direction of |𝑥⟩. 

Outer product: a matrix

Inner product: a scalar

Properties: 
1. Π is symmetric. (Hermitian: Π† = Π) 
2. Project twice is the same as once. (Π2 = Π)

|𝑦⟩

|𝑥⟩
|𝑝⟩

Image credit: Peter Hermes Furian / Alamy Stock

Projection is a matrix:

𝑝 = Π𝑥 𝑦 , Π𝑥 =
𝑥 𝑥

𝑥|𝑥

Projected state: 𝑝 = ?

Derive on board:

Π0 =
0 0

0|0
, What is Π0 𝜓 ?

Principle #4: Measurements

(More details in Lecture 6.)



Hermitian Matrix in QM

• Hermitian matrix has real eigenvalues.
• Corresponding to physical observable 

with real-valued quantity.

Eigenvalue equation for a linear operator 𝐴:

𝐴 𝑣𝑗 = 𝜆𝑗 𝑣𝑗

where 𝑣𝑗  is the (non-zero) eigenvector,

and 𝜆𝑗 is a complex number known as the eigenvalue.

Hermitian matrix (complex): 
𝐻† = 𝐻

Derive on board (Pauli Matrices): 

“Pauli Z operator” 𝜎𝑍 =
1 0
0 −1

• Eigenvalues: 𝜆0 = 1 and 𝜆1 = −1

• Eigenvectors: 𝑣0 =
1
0

 and 𝑣1 =
0
1

“Pauli Y operator” 𝜎𝑌 =
0 −𝑖
𝑖 0

• Eigenvalues: 𝜆0 = 1 and 𝜆1 = −1

• Eigenvectors: 𝑣0 =
1

2

1
𝑖

 and 𝑣1 =
1

2

1
−𝑖

“Pauli X operator” 𝜎𝑥 =
0 1
1 0

• Eigenvalues: 𝜆0 = 1 and 𝜆1 = −1

• Eigenvectors: 𝑣0 =
1

2

1
1

 and 𝑣1 =
1

2

1
−1

Standard basis!
0 , 1

+ , −  basis!

Symmetric matrix (real):
𝑆𝑇 = 𝑆

Why?
+𝑖 , −𝑖  basis!



Spectral Theorem

For a linear operator that is normal (𝐴†𝐴 = 𝐴𝐴†), we can write it in the spectral decomposition:

𝐴 = ෍

𝑗

𝜆𝑗 𝑣𝑗 𝑣𝑗

where 𝜆𝑗 are the eigenvalues, and 𝑣𝑗  are the corresponding (orthonormal) eigenvectors.

Applications:

• Power of a matrix:

𝐴8 = ෍

𝑗

𝜆𝑗 𝑣𝑗 𝑣𝑗

8

= ෍

𝑗

𝜆𝑗
8 𝑣𝑗 𝑣𝑗

• Exponential of a matrix:

𝑒𝐴 ≡ ෍

𝑘=0

∞
1

𝑘!
𝐴𝑘 = ෍

𝑗

𝑒𝜆𝑗 𝑣𝑗 𝑣𝑗

Example:

𝑒𝑖𝜃𝜎𝑧 = 𝑒𝑖𝜃 0 0 + 𝑒−𝑖𝜃 1 1 = 𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃

𝜎𝑍 =
1 0
0 −1

= +1 0 0 + −1 1 1 𝜎𝑋 =
0 1
1 0

= +1 + + + −1 − −

Examples:


	Slide 1: Introduction to Quantum Computing
	Slide 2: Mathematical Model of Quantum Systems
	Slide 3: Superposition State of A Qubit
	Slide 4: Vector Spaces
	Slide 5: More about Vectors
	Slide 6: What about Complex Vectors?
	Slide 7: Complex Numbers
	Slide 8: Back to Complex Vectors
	Slide 9: What about more qubits?
	Slide 10: High-Dimensional Complex Hilbert Space
	Slide 11: Change of Basis?
	Slide 12: Orthonormal Basis
	Slide 13: The Process of Evolving a Probabilistic State
	Slide 14: The Process of Evolving a Probabilistic State
	Slide 15: The Process of Evolving a Superposition State
	Slide 16: Geometry-Preserving Transformations
	Slide 17: Understanding Projections
	Slide 18: Hermitian Matrix in QM
	Slide 19: Spectral Theorem

