

Mathematical Tools for Quantum Computing

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. **Yongshan Ding**Computer Science, Applied Physics, Yale Quantum Institute

Mathematical Model of Quantum Systems

Four Principles to model quantum systems mathematically:

1. Superposition:

The state of a qubit is a unit complex vector in the two-dimensional *Hilbert Space*.

2. Composition:

The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:

Time evolution of a quantum system is a *unitary process*.

4. Measurement:

Measuring a quantum state causes its superposition to *collapse/project* to one of its basis states randomly.

Von Neumann: "In mathematics, you don't understand things. You just get used to them."

Superposition State of A Qubit

The **state of a qubit** is represented by a unit vector in the two-dimensional complex vector space (**Hilbert Space** \mathbb{C}^2). In the Dirac notation:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

where $\alpha, \beta \in \mathbb{C}$, satisfying that its 2-norm: $|\alpha|^2 + |\beta|^2 = 1$.

Here, α and β are called the **probability amplitudes** on the (classical) basis, $|0\rangle$ and $|1\rangle$, respectively.

(can be negative, even complex numbers)

$$|\psi\rangle = 0.6|0\rangle - 0.8|1\rangle = \begin{bmatrix} 0.6\\ -0.8 \end{bmatrix}$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix}1\\i\end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Not valid:
$$\frac{1}{4}|0\rangle + \frac{i}{2}|1\rangle = \begin{bmatrix} 1/4\\i/2 \end{bmatrix}$$

Vector Spaces

Vector space: a (special) set of vectors.

Example: Position vectors for points on a 2D surface.

 \mathbb{R}^2 : Two-dimensional real vector space

Position on a flat surface: X-y plane

Surface of a sphere: Longitude-latitude

Two real-valued coordinates.

Algebra: that allows us to take linear combinations.

- Scalar multiplication: $c \cdot \vec{a} = \begin{bmatrix} ca_0 \\ ca_1 \end{bmatrix}$ for some $c \in \mathbb{R}$
- Vector addition: $\vec{a} + \vec{b} = \begin{bmatrix} a_0 + b_0 \\ a_1 + b_1 \end{bmatrix}$

"Vectors after algebra remain in the same space."

 \mathbb{R}^n : n-dimensional real vector space:

all vectors with n real components: $\vec{a} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \in \mathbb{R}^n$

More about Vectors

Properties (derive on board):

• Length of a vector (as in ℓ_2 -norm or Euclidean norm): $\vec{a} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$

$$\|\vec{a}\|_2^2 = \vec{a}^T \vec{a}$$

• Angle between two vectors: $\vec{a} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$

$$\|\vec{a}\| \cdot \|\vec{b}\| \cos \theta = \vec{a}^T \vec{b}$$

Hilbert space: inner-product vector space.

Well-defined "geometry" (incl. length and angle).

 \vec{a}^T : Transpose of \vec{a}

Inner product of \vec{a} and \vec{b} : $\vec{a}^T \vec{b}$

Do they work for complex vectors?

What about Complex Vectors?

A **complex number** $\alpha \in \mathbb{C}$ is of form:

$$\alpha = a_0 + a_1 i$$
Real component

Where a_0 , $a_1 \in \mathbb{R}$ and $i^2 = -1$.

A vector in a two-dimensional complex vector space:

$$|\psi\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \in \mathbb{C}^2$$

Can we use the same definition for length and angle?

• Length:

$$\vec{a}^T \vec{a} = \|\vec{a}\|_2^2$$

Angle:

$$\vec{a}^T \vec{b} = \|\vec{a}\| \cdot \|\vec{b}\| \cos \theta$$

What could be problematic?

Example: Length of $|\psi\rangle = \begin{bmatrix} 1 \\ i \end{bmatrix}$?

Complex Numbers

A **complex number** $\alpha \in \mathbb{C}$ is of form: $\alpha = a_0 + a_1 i$, where $a_0, a_1 \in \mathbb{R}$ and $i^2 = -1$.

Complex Plane:

Cartesian coordinate
$$(a_0, a_1)$$
: (real, imaginary) $\alpha = a_0 + a_1 i$

Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$

Polar coordinate
$$(r, \theta)$$
: (magnitude, phase) $\alpha = r \cos \theta + r \sin \theta \ i = r \cdot e^{i\theta}$ "length" "angle"

"Length": Magnitude
$$r=|\alpha|=\sqrt{a_0^2+a_1^2}=\sqrt{\alpha^*\alpha}$$
 "Angle": Complex phase $\theta=\arctan\frac{a_1}{a_0}$

Notation:
$$\alpha^*$$
 is the complex conjugate of α
$$\alpha^* = a_0 - a_1 i = r \cdot e^{-i\theta}$$

Back to Complex Vectors

For a quantum state $|\psi\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$: What are $\langle \psi | \psi \rangle$, $\langle 0 | \psi \rangle$ and $\langle 1 | \psi \rangle$?

Algebra:

- Scalar multiplication: $c \cdot |\psi\rangle = \begin{bmatrix} c\alpha_0 \\ c\alpha_1 \end{bmatrix}$ for some $c \in \mathbb{C}$
- Vector addition: $|\psi\rangle + |\varphi\rangle = \begin{bmatrix} \alpha_0 + \beta_0 \\ \alpha_1 + \beta_1 \end{bmatrix}$

Properties (derive on board):

• Length of a vector: $|\psi\rangle = \frac{\alpha_0}{\alpha_1}$

$$\||\psi\rangle\|_2^2 = \begin{bmatrix} \alpha_0^* & \alpha_1^* \end{bmatrix} \cdot \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$$

Example: Length of $|\psi\rangle = \begin{bmatrix} 1 \\ i \end{bmatrix}$

• Angle between two vectors: $|\psi\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$ and $|\varphi\rangle = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$

$$\cos \theta = \begin{bmatrix} \alpha_0^* & \alpha_1^* \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

Dirac Notation:

$$\langle \psi | = (|\psi\rangle)^{\dagger} = (|\psi\rangle^*)^T = [\alpha_0^* \quad \alpha_1^*]$$

Adjoint of a vector: conjugate transpose

Inner product: "Bra-ket"

$$\rightarrow \langle \psi | \cdot | \varphi \rangle = \langle \psi | \varphi \rangle$$

What about more qubits?

Two coins:

3

?

$$Pr(0_A) = 0.36$$
, $Pr(1_A) = 0.64$

$$Pr(0_B) = 0.5$$
, $Pr(1_B) = 0.5$

Assuming they are independent: $Pr(0_A 0_B) = Pr(0_A) \cdot Pr(0_B)$

$$Pr(0_A 0_B) = 0.36 \cdot 0.5,$$
 $Pr(0_A 1_B) = 0.36 \cdot 0.5,$ $Pr(1_A 0_B) = 0.64 \cdot 0.5,$ $Pr(1_A 1_B) = 0.64 \cdot 0.5,$

We use a "joint state" to fully characterize the system:

Tensor product:

$$\begin{bmatrix} 0.36 \\ 0.64 \end{bmatrix} \otimes \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.36 \cdot \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \\ 0.64 \cdot \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0.36 \cdot 0.5 \\ 0.36 \cdot 0.5 \\ 0.64 \cdot 0.5 \\ 0.64 \cdot 0.5 \end{bmatrix} \stackrel{\Pr(0_A 0_B)}{\Pr(1_A 0_B)}$$

Two qubits:

$$|\psi_A\rangle = 0.6|0\rangle + 0.8|1\rangle$$

 $|\psi_B\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$

Assuming they are independent: $\langle 0_A 0_B | \psi_{AB} \rangle = \langle 0_A | \psi_A \rangle \cdot \langle 0_B | \psi_B \rangle$

$$|\psi_{AB}\rangle = 0.6 \cdot \frac{1}{\sqrt{2}}|00\rangle - 0.6 \cdot \frac{1}{\sqrt{2}}|01\rangle + 0.8 \cdot \frac{1}{\sqrt{2}}|10\rangle - 0.8 \cdot \frac{1}{\sqrt{2}}|11\rangle$$

$$\begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} \otimes \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0.6 \cdot 1/\sqrt{2} \\ -0.6 \cdot 1/\sqrt{2} \\ 0.8 \cdot 1/\sqrt{2} \\ -0.8 \cdot 1/\sqrt{2} \end{bmatrix}_{ \begin{vmatrix} 1_A 0_B \rangle \\ |1_A 0_B \rangle \\ |1_A 1_B \rangle }$$

High-Dimensional Complex Hilbert Space

The **joint state of n qubit** is a 2^n -dimensional complex vector in the **Hilbert Space** \mathcal{H} , described by complex numbers, $\alpha_i \in \mathbb{C}$, for $i \in \{0,1\}^n$, satisfying that its 2-norm: $\sum_{i \in \{0,1\}^n} |\alpha_i|^2 = 1$. In the Dirac notation:

$$|\psi\rangle = \alpha_{00\dots 0}|00\dots 0\rangle + \alpha_{00\dots 1}|00\dots 1\rangle + \dots + \alpha_{11\dots 1}|11\dots 1\rangle = \begin{bmatrix} \alpha_{00\dots 0} \\ \alpha_{00\dots 1} \\ \vdots \\ \alpha_{11\dots 1} \end{bmatrix} \in \mathcal{H} = \mathbb{C}^{2^n}$$

Inner product:
$$\langle \psi | \psi \rangle = [\alpha_{00...0}^* \quad \alpha_{00...0}^* \quad ... \quad \alpha_{00...0}^*] \begin{bmatrix} \alpha_{00...0} \\ \alpha_{00...1} \\ \vdots \\ \alpha_{11...1} \end{bmatrix} = \sum_{i \in \{0,1\}^n} \alpha_i^* \alpha_i = 1$$
 Normalized.

This is a linear combination over 2^n basis states: $|00 \dots 0\rangle$, $|00 \dots 1\rangle$, ..., $|11 \dots 1\rangle$.

Change of Basis?

$$|\psi\rangle = 0.6|0\rangle + 0.8|1\rangle$$

$$|\psi\rangle=0.6|0\rangle+0.8|1\rangle$$
 Standard basis:
$$\left\{ \begin{array}{l} |0\rangle=\begin{bmatrix}1\\0\end{bmatrix}\\ |1\rangle=\begin{bmatrix}0\\1 \end{array} \right]$$

Define an alternative basis:

$$\begin{cases} |+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\ |-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \end{cases}$$

Derive on board:

$$|\psi\rangle = ?|+\rangle + ?|-\rangle$$

What about the following basis for $|\psi\rangle$?

$$\begin{cases} |v\rangle = |0\rangle + i|1\rangle \\ |w\rangle = |0\rangle - i|1\rangle \end{cases}$$

What are the criteria for a "good" basis?

Orthonormal Basis

Span: A set of vectors $|v_0\rangle, |v_1\rangle, ..., |v_{n-1}\rangle$ spans the vector space S, if for any vector $|w\rangle \in S$, there exists $\alpha_0, ..., \alpha_{n-1} \in \mathbb{C}$:

$$|w\rangle = \alpha_0|v_0\rangle + \alpha_1|v_1\rangle + \dots + \alpha_{n-1}|v_{n-1}\rangle$$

Linear combination (with complex coefficients)

Linear dependence: A set of (non-zero) vectors are *linearly* dependent if there exists $\alpha_0, \dots, \alpha_{n-1}$ not all zero:

$$0 = \alpha_0 |v_0\rangle + \alpha_1 |v_1\rangle + \dots + \alpha_{n-1} |v_{n-1}\rangle$$

Basis: *linearly independent* vectors *spans* the vector space *S*.

Orthonormal basis:

- Length: A set of unit vectors
- Angle: mutually orthogonal

$$\langle v_j | v_k \rangle = \begin{cases} 1, & \text{if } j = k \text{ (unit length)} \\ 0, & \text{if } j \neq k \text{ (orthogonal)} \end{cases}$$

Examples: two-qubit basis

$$|00\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, |01\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, |10\rangle = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, |11\rangle = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

$$|++\rangle = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, |+-\rangle = \frac{1}{2} \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, |-+\rangle = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, |--\rangle = \frac{1}{2} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$$

The Process of Evolving a Probabilistic State

A **Markov Process** is a stochastic process over a state space S such that:

$$\Pr[S_{t+1} = s' | S_t = s, S_{t-1} = s_{t-1}, \dots, S_0 = s_0] = \Pr[S_{t+1} = s' | S_t = s]$$
 For all state $s_t \in S$ at time t .

Transition probability (from s to s'):

$$\Pr[S_{t+1} = s' | S_t = s]$$

Example:

A 3-bit Markov Model for CPSC 4470 student:

- P Phone out? (0 = away, 1 = out)
- D Discussing? (0 = quiet, 1 = participating)
- U Understanding now? (0 = lost, 1 = get)

Eight possible states ($s \in S$):

- O PDU Silently lost
- $1 \stackrel{(P)}{(D)} \stackrel{(U)}{(U)}$ Zen absorber
- 2 PDU Eager-but-lost
- 3 (P) (D) (U) Classroom king
- 4 P D U Doomscrolling
- 5 PDU Overconfident texter
- 6 PDU Clueless chaos
- 7 PDU Mythical Multitasker

A **transition matrix** to fully characterize the process.

Col-k, Row-j of the matrix:

$$T[k,j] = \Pr[S_{t+1} = k | S_t = j]$$

- Non-negative elements.
- Columns sum to 1.

The Process of Evolving a Probabilistic State

 $\lceil \Pr[S_t = 0] \rceil$

 $Pr[S_t = 1]$

 $\Pr[S_t = 2]$

 $Pr[S_t = 3]$

 $\Pr[S_t = 4]$

 $\Pr[S_t = 5]$

 $\Pr[S_t = 6]$

 $\lfloor \Pr[S_t = 7] \rfloor$

Probabilistic mixture of possible states:

Evolution of probabilistic state:

$$\overrightarrow{p_{t+1}} = T \cdot \overrightarrow{p_t}$$

Transition matrix

The Process of Evolving a Superposition State

Superposition of possible states:

$$|\psi_t\rangle = \begin{bmatrix} \alpha_{00\dots 0} \\ \alpha_{00\dots 1} \\ \vdots \\ \alpha_{11\dots 1} \end{bmatrix}$$

Evolution of superposition state:

$$|\psi_{t+1}\rangle = U \cdot |\psi_t\rangle$$

Unitary matrix

Geometry-Preserving Transformations

Inner product gives the length and angle of vectors:

Real vectors: $\overrightarrow{v_i}^T \overrightarrow{v_k}$

Complex vectors: $\langle v_j | v_k \rangle$

Transformations that preserves "geometry": lengths and angles.

- Orthonormal basis stays orthonormal.
- Shapes don't get stretched.

	Orthogonal Matrix	Unitary Matrix
Definition	$Q^TQ = I$	$U^{\dagger}U = I$
Inverse	$Q^{-1} = Q^T$	$U^{-1} = U^{\dagger}$
Columns	Real orthonormal vectors	Complex orthonormal vectors
Example	2D rotation matrix	Quantum gates

Principle #3: Transformation

(More details in Lecture 5.)

Understanding Projections

<u>Derive on board</u>:

$$\Pi_0 = \frac{|0\rangle\langle 0|}{\langle 0|0\rangle}$$
, What is $\Pi_0 |\psi\rangle$?

Principle #4: Measurements

(More details in Lecture 6.)

Projection (as a "linear operator": mapping from one vector space to another)

Example:

3D object casting shadows onto 2D plane.

Projecting $|y\rangle$ onto the line direction of $|x\rangle$.

Projected state: $|p\rangle = ?$

Projection is a matrix:

$$|p\rangle = \Pi_x |y\rangle, \Pi_x = \frac{|x\rangle\langle x|}{\langle x|x\rangle}$$

Outer product: a matrix

Inner product: a scalar

Properties:

- 1. Π is symmetric. (Hermitian: $\Pi^{\dagger} = \Pi$)
- 2. Project twice is the same as once. $(\Pi^2 = \Pi)$

Hermitian Matrix in QM

Symmetric matrix (real):

$$S^T = S$$

Hermitian matrix (complex):

$$H^{\dagger} = H$$

- Hermitian matrix has real eigenvalues. -
- Corresponding to *physical observable* with real-valued quantity.

Why?

Eigenvalue equation for a linear operator A:

$$A|v_i\rangle = \lambda_i|v_i\rangle$$

where $|v_i\rangle$ is the (non-zero) **eigenvector**, and λ_i is a complex number known as the **eigenvalue**. <u>Derive on board</u> (Pauli Matrices):

"Pauli Z operator"
$$\sigma_Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 Standard basis! $\{|0\rangle, |1\rangle\}$

- Eigenvalues: $\lambda_0=1$ and $\lambda_1=-1$ Eigenvectors: $|v_0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$ and $|v_1\rangle=\begin{bmatrix}0\\1\end{bmatrix}$

"Pauli Y operator"
$$\sigma_Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

 $\{|+i\rangle, |-i\rangle\}$ basis!

- Eigenvalues: $\lambda_0 = 1$ and $\lambda_1 = -1$
- Eigenvectors: $|v_0\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\i \end{bmatrix}$ and $|v_1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-i \end{bmatrix}$

"Pauli X operator"
$$\sigma_{\chi} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $\{|+\rangle, |-\rangle\}$ basis!

- Eigenvalues: $\lambda_0 = 1$ and $\lambda_1 = -1$
- Eigenvectors: $|v_0\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}$ and $|v_1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}$

Spectral Theorem

For a linear operator that is normal ($A^{\dagger}A = AA^{\dagger}$), we can write it in the **spectral decomposition**:

$$A = \sum_{i} \lambda_{j} |v_{j}\rangle\langle v_{j}|$$

where λ_i are the eigenvalues, and $|v_i\rangle$ are the corresponding (orthonormal) eigenvectors.

Examples:

$$\sigma_Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = (+1)|0\rangle\langle 0| + (-1)|1\rangle\langle 1| \qquad \sigma_X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = (+1)|+\rangle\langle +|+(-1)|-\rangle\langle -|$$

Applications:

Power of a matrix:

$$A^{8} = \left(\sum_{j} \lambda_{j} |v_{j}\rangle\langle v_{j}|\right)^{8} = \sum_{j} \lambda_{j}^{8} |v_{j}\rangle\langle v_{j}|$$

Exponential of a matrix:

$$e^A \equiv \sum_{k=0}^{\infty} \frac{1}{k!} A^k = \sum_j e^{\lambda_j} |v_j\rangle\langle v_j|$$

Example:

$$e^{i\theta\sigma_z} = e^{i\theta}|0\rangle\langle 0| + e^{-i\theta}|1\rangle\langle 1| = \begin{bmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{bmatrix}$$