Yale University

Quantum Circuits and
Quantum Programming

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding
Computer Science, Applied Physics, Yale Quantum Institute

Mathematical Model of Quantum Computing

Four Principles to model quantum systems mathematically:

1. Superposition:
The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space.

2. Composition:
The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation: (More in Lecture 5)
Time evolution of a quantum system is a unitary process.

4. Measurement: (More in Lecture 6)
Readout information from a quantum state causes the superposition state to collapse/project to one of

its basis states randomly.

Richard Feynman: “What | cannot create, | do not understand.”
2

Programming Model of Quantum Computing

Quantum Programming:
1. Base programming language:
E.g., Python
2. Library interface and specifications:
Types (quantum/classical registers), methods (initializations, gates, measurements), constants
3. Execution model:
Ensures the proper execution of quantum programs

(Based on quantum circuit model.) qc =
4. Backend: qc.h(0)
. . . qc.s(1)

Classical Simulators or Quantum Devices qc. cx(0,1)

qc. ([o], [0])
print(qc)
outcome = gc.

Principle #1 — Superposition State

The state of a qubit is a two-dimensional complex vector in the Hilbert Space /', described by two complex numbers,
a, € C, satisfying that its 2-norm: |a|? + |8]|? = 1. In the Dirac notation:

) = al0) + 11 = 5] € 7

Defining and addressing qubits:

class Qubit(object): arg: index of the qubit; label: name of the qubit
"iQubit object™™

def __init__(self, arg, label='q'):

e s Y. init () Initialize qubits: [q0, q1, g2, g3, q4]

.arg = arg
. label = label

qubit_array = [Qubit(i) for i in range(5)]

Principle #1 — Superposition State

The state of a qubit is a two-dimensional complex vector in the Hilbert Space H, described by two complex numbers,
a, € C, satisfying that its 2-norm: |a|? + |8]|? = 1. In the Dirac notation:

) = al0) + 11 = 5] € 7

Defining and addressing qubits:

class Qubit(object): arg: index of the qubit; label: name of the qubit
"nrgubit object"™"

def __init__(self, arg, label='q'):

ioer (Oubit RGN state: numpy array to store the qubit’s state vector.

.arg = arg (optional: needed for classical simulator)
. label = label
.state = np.array([1, 0], dtype=complex Initialized to [0) = [(1)] Does it work for multiple qubits?

Principle #2 — Composition

Tensor Product and Entanglement

A Quantum Register for tracking multiple qubits (size: number of qubits):

The joint systemisin Hyg = H, Q Hjp.

class QuantumRegister(object):
""QuantumRegister is where we keep track of qubits™*'"

def __init_ (self, num_q, label='qreg'): E.g., for two separable qubits: |Y,) € }[A and |Yg) € Hp:
supel (QuantumReglster Je Ninit () .80 aO.BO
.size = num_q Qo
.label = label _ R) = l“ol ® Bol _ Bl _ | %ob1
.array = [Qubit(i) for i in range(num_q)] WJAB) o |¢A> l/)B Ly .81 o 'ﬂo' “1.30
a
L 1B Ly]
Ordered array of qubits: [0, g1, g2, 93, g4] Joint state: q0.state @ ql.state @ --- @ g4.state
Why does ordering matter? 7 >
(1/V2] (1/+/2]
1 o [UV2] _ |12 [1/\/5] 1 0
Example: = =[1/V2],) = X = .
ple: [Y45) lol X L/\E A [¥Ba 3 lol 1 N2
. 0 - L 0 6

Principle #2 — Composition

Tensor Product and Entanglement

1/V2]
What about: \/—15 |00) + \/—15 |11) = 8 ? It belongs to H,; ® Hj, but no longer separable: W -®<5Y.
11/+/2. “Entangled state”

We need to track the joint state of the entire quantum register

Entangled state or product state? together, not qubit by qubit!

class Qubit(object):

[J |OOO> "“”QUbit Object“““
def __init_ (self, arg, label='q'):
1 1 1 1 super(Qubit,).__init_ ()
° —|OO>4'—|01>4'—|10>4'—|11> .arg = arg
2 2 2 2
. label = label
o l |OO) + 1 |01) + l |10> . 1 |11) class QuantumRegister(object):
2 2 2 2 """QuantumRegister is where we keep track of qubits"'""
def __init__ (self, num_qg, label='qreg'):
super(QuantumRegister,). init_ ()
3 VQ; Vﬁ; 2 .Size = num_q
* £100) —=]01) + = [10) — Z[11) .label = label

.array = [Qubit(i) for i in range(num_q)]
.state = np.array([1] + [0] x (2 %k num_g - 1), dtype=complex

Principle #3 — Transformation

Unitary Evolution
A quantum state evolves by unitary transformation:
W) = Uly) (Unitary matrix: U1 = UT)

Assuming it evolves for T discrete steps:
[Yr) = Ur ... U Uy [1hy)

o) = [4] e = [4] fme
Input state Gate #1 Gate#2 Output state
Our first (sequential) quantum circuit: |[0) — H S ——— |Y)y=? HS|0)or SH|0)?
time
Hadamard gate: Phase gate:

111)
H=% [1 —1] 5= [o i]
Multiplying unitary matrices to the state:

1
R R FN [1 PR | A A 8

More Single-Qubit Gates

NOP (no-op)
Identity matrix: B
I=1T=]71
! o=1=[} O Foranyly) 1Y) =)
NOT (bit flip)
Pauli X matrix: * X|0)= 1) X =xT=x"1
. w=x=[0 1] XID=10
10 * X(al0) + B[1)) = aX[0) + pX[1) = a[1) + B]0)
Hadamard
Hadamard matrix: « HJ|0) = |0)\;—E|1) = |+) .)
—_ H I _ i 1 1 0)—|1 H == H == H_
H=gl Sl . mn =12
Phase flip _
Pauli Z matrix: * Z10)=0)
2 oo=z=[t 0] Z|1) = —|1) z=zt=z7"1
777l -1l e Z(al0) + BI1)) = aZ|0) + BZ|1) = «|0) — B[1)

More Single-Qubit Gates

Phase gate
Phase matrix: * S10) =10) 2
s s=[1 0 + SI1) =1]1) £=3
0 i « S(a|0) + B|1)) = aS|0) + BS|1) = «|0) + iB|1)
T 1 0 .
S st=1y _, + ST(al0) + B11)) = al0) — if]1)
T gate
T matrix: ,
T r=t 0] T@lO)+BIL) = alo)+e™/pl) Z=8*=T"
0 em/4
—lrt _t 0 ~i
T M=ly pmma] o TH@I0)+ BID) = €l0) + e B

Interaction between Two Qubits

Controlled-X / CX / CNOT gate: Examples: A two-qubit quantum program:

A
. I CX,1100) = [00) 0y — H I

N CXy1101) = (01) 1)
CX0,1|10) = |11) 10) N
“Quantum if-else”: CXo1|11) = [10)
* If Ais 0: do nothing.
 IfAis1:flip B. [Y) = CXo,1H,|00)
00 o1 10 " CXO,1(O6|OO> + O8|10>) = CXO’1(|+> ® |O>)
00 g_) 2 8 8 = 0.6/00) + 0.8|11) ~ Jooy+in)
01 -
= V2
X=ulo 0 0 1 i
ulQ 0 1 0 “Entangling gate”

Interaction between Two Qubits

Derive on board: What are the following transformations?

FROM
SWAP gate: 00 01 10 11
A 00rg 0 0 0
1 901 0 0 1 0
B 010 1 0 0l
1L0 0 0 1 |

X—X

Swapping A and B: |

* |f separable state:

SWAP0,1(|1/JA> 03¢ |¢B)) = |¢B) 03¢ |1/JA>

* |f entangled state:

SWAP, ; (|00)) = [00)
SWAP, , (101)) = [10)
SWAP, 1 (|10)) = [01) CXoq1 =
SWAP, ; (|11)) = |11)

- Upg Up2 Up1
_|U10 U122 Uqq
U - U * SWAP(),l —_ uZO u22 u21
U3zp U3z U3q
Upp U1 Up2
__|U20 U1 Upp
I SWARy,, - U = Ujp U11 Up2
Uzp U3zqp U3

I T i

- .

U N\

0O O 0 1 0 O
1 0 0 0 0O O
0 0 1':>CX1»°‘lo 0 1
0 1 0 0 1 0

Up37
Uq3

U3 |”

class Gate(object):
"""Gate object to describe its name, kind, and matrix"""

def __init__ (self, name, num_q, matrix):
. supel (Gate,) «_1N1 _()
Instruction Set

.nuUM_q = num_q
.matrix = matrix

Define Gate by its name, kind (number of qubit), and matrix

Single-qubit gates: HGate = Gate('h', 1, 1/np.sqrt(2) x np.array([[1,1],[1,-111, dtype=comple
Hadamard gate:
— H = H = \%H _11] Two-qubit gates:
Phase gate: B! 0 O 0
S 10 0 1 0 0
S = . =
. o i I =10 00 1
Idle gate: |
— I — i [1 0 0 0 1 0
oy =1= 0 1 -1 0 O O
Pauli X gate (NOT): _ 10 1 0 0
X 1 0 0o 0 0 —1
Pauli Y gate:
1y — ay=Y=_O —i] 1 0O O 07
i 0. _ 10 0 1 0
Pauli Z gate: SWAP = 0 1 0 0"
— Z — UZ=Z=[(1) _01_ 0 0 O 1-

Parallel Execution of Quantum Gates

Parallel gates on two qubits:

) 1 0 1 0
¥a) = H [What's the joi ion? =—|9 D
What'’s the joint transformations H(X)S—\/7 1 0 -1 0
V) \) 0 i 0 —i
I) 1 0 1 0
_—~f/0 1 0 1
HOI="711 0 -1 o]
Yy)— HA ! — Wad— I qH[— o 1 0 -1
Ye)— I S [— Ye)— S I [— 1 00 0
_{0 i 0 O
T®S=10 0 1 o]
0 0 0 i

HRS=UIQHHN=HRINURS)

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

|0)+i|1)

Measure |Y) = a|0) + B|1) = 5

15

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure |Y) = a|0) + B|1) = |°>\J/’§i|1> T y
10) o S o |After: Becomes either
|0) or |1) randomly.
__________ oy +il1)
[Y) = 7

16

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

0)+i1) e, \
V2 | |
10y — H S o1

Measure |Y) = a|0) + B|1) =

After: Becomes either
|0) or [1) randomly.

After measurement:

V2 Q p=20.5
Measurement outcome: ‘[
Q p =0.5

Random, [-Q p=lal’
T L@ v=sr

Basis: {|0), |1)} 17

Yale @

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure |Y) = a|0) + B|1) = lO)\J/’;l) T \
10) o S o |After: Becomes either
Start over and prepare the same |): |0) or |1) randomly.

V2 @ p =05
Measurement outcome: *[
o p =05

‘ Random=r0 p=lal’
l-o p = |BI?

Basis: {|0), |1)} 18

Yale @

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure) = a|0) + B|1) = % ;T \
| on
After measurement: | 10) H S i /
Inherently probabilistic: NN) = 0) +il1) /
V2

Random, [-Q p=lal’
L@ v=sr

Basis: {|0), |1)}

* Produces a random bit
* Collapses the qubit

class QuantumRegister(object):

"""QuantumRegister is where we keep track of qubits
def __init_ (self, num_q, label='qreg'):
uper(QuantumRegister,).__init_ ()
.size = num_q
.label = label
.array = [Qubit(i) for i in je(num_q)]
-state = np. ([1]1 + [@] * (2 %k num_gq - 1), dtype=comple

class ClassicalRegister(object):
""""ClassicalRegister is where we keep track of measurement outcomes"""
def init_ (self, num_c, label='creg'):
per(ClassicalRegister,). _init_ ()
.Size = num_c
. label = label
.state = np. ([bool(@) for _ in range(num_c)])

Measurement outcome:

After: Becomes either
|0) or [1) randomly.

0 p =0.5
{0 p =05

19

Yale

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure) = a|0) + B|1) = a'|+) + '|—) 7Ty \

After: Becomes either
|0) or [1) randomly.

o) —— H S H— o

Measure in a different (orthonormal) basis:

o op=ldff T)

V2 @ p =05
Q p = |,3'|2 Measurement outcome: ‘[
o p = 0.5
D) sass 2 1)

20

Principle #4 — Measurement

by “probing/disturbing” its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure [Y) = a|0) + B|1) = a'|+) + B'|-) D E—— \

After: Becomes either
|0) or [1) randomly.

Measure in a different basis:

oy —— H S H—on

10)+il1) .

V2 {Q p =05

o p=ld|? S) =

Q p=Ip

Measurement outcome:

__

After: Becomes either
|+) or |—) randomly.

1+ D|+)+ 1 =D)|-)
2 o p=05

Measurement outcome: -
= 0.5
@ -

Sy =

Putting it all together — QuantumCircuit

Quantum circuit:

|0) i— H I /1 ——
0) i — S D [Y)
Initialization

Quantum program:

qc :
qc.h(0)
qc.s(1)
qc.cx(0,1)

qc. ([o], [0])
print(qc)
outcome = gcC.

Execution of QuantumCircuit

Quantum circuit:

) 1 0 1 0

|0) H 0/1 —— - ion: =—|0 0 1
Joint transformation: H ® S |1 0 -1 0
00 — s D) 0 ¢t 0~

Parallel Gates: H Q) S
Quantum program:

qc
c.h(0)
be gc. (1) Instruction-level parallelism (ILP)
qc' (0; 1)
qc. ([e], [0])
print(qc)
outcome = gcC.

Putting it all together — QuantumCircuit

Quantum circuit:

|O) — A I 0/t CXO,1 Gate: ‘ l
0} — S [¥)

%

S OO -
o O O
_- oo O
o RO O

Two-qubit gate: CNOT
Quantum program:

qc =
qc.h(0)

qc.s(1)

qc.cx(0,1)

qc. ([e], [0])
print(qc)

outcome = gcC.

Gates in a Multi-Qubit Circuit

CX, 1 Gate: CX, o Gate:

el el

What about the following gates in a gc=QuantumCircuit(3,3)?

S OO -
S O O
_- oo O
o O O
S OO -
-0 o O
o O O
S O O

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

000 1 ;
001
010
011
100

101
110

111*

‘ 000 1 .
001 1

_é

9_

010
011
100
101
110

111*

1

1

1

1

qgc.cx(1,0): CX1 o ® I gc.cx(0,2): SWAP, , - (CXo1 ®I) - SWAP, ,

Homework: tensorizeGate().
Expand a gate into a 2™ X 2™ matrix for an n-qubit circuit.

Identity on untouched qubit(s).

Putting it all together — QuantumCircuit

Quantum circuit:

|0) — H I 0/1
0) — S [Y)

%

Measure + Idle
Quantum program:

qc :
qc.h(0)
qc.s(1)
qc.cx(0,1)

qc. ([o], [0])
print(qc)
outcome = gcC.

Putting it all together — QuantumCircuit

Quantum circuit: Classical

; [

|0) — 0/1

0) 4 S

S

1
Output\

Quantum program:

Gers
qc.h(0)

qc.s(1)

qc.cx(0,1)

qc. ([e], [0])

print(qc)
outcome = gcC.

0/1
[Y)

Quantum

class QuantumCircuit():

"""QuantumCircuit"""
def (self, num_q, num_c):
(QuantumCircuit,). ()
.num_g = num_q
.qubits = (num_q) # initialized qubits
.NUM_C = num_c
Hchitsh= (num_c) # initialized cbits
.circuit = [] # sequence of instructions
.pc = @ # program counter
.curr_state = .qubits.state # state up to the point of program counter

def (self, operation, g_array, c_array):
Add new instruction to circuit

instruction = [operation, q_array, c_arrayl
.circuit. (instruction)

Hadamard gate
def h(self, qubit):
Define Gate by its name, kind (number of qubit), and matrix
HGate = (Eh 1 np= (2) * np. ([[1,11,[1,-111, dtypes=
(HGate, [qubitl, [1)
return

Measure qubits in array 'qubits' and store classical outcome in 'cbits
Note: Action of measurement will be defined in simulate function.
def (self, qubits, cbits):
assert(len(qubits) == (cbits))
Measure = ('measure’, (qubits),
(Measure, qubits, cbits)
return

COMING UP NEXT

e Distinguishing two qubits
e Visualizing one qubit

28

Distinguishing Two Qubits

Assume |Y,), |Wp) € H with real amplitudes.
[¥a) Length: (Y, |Y,) = (Yplpp) =1
o Angle: cos 0 = (Y, |Yp)
|Yp) Qubits are the same if 6 = 0

Can we tell if 8 = 0 by measuring the qubits?

W) = [gﬂ lYg) = _'80‘ Measurement in the standard basis:
pa = 0[P)]? = |aol?, pe = [{0[p)|* = |Bol?

@~ [0
W) { Wg) Ps Measurement Strategy:
0 1—p, i Q 1—pg ° Receive multiple copies of the two qubits.
* Repeat the measurement experiment.
* If py # pp then Different!

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1: ’Q p="7
Q) r=?
* |Yp)=[+) - ‘
Q
Different!

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1: "Q p=20
* |¢A>:|1> -~o p:].
B p = 0.5
* |Yp)=|+) - G
Q@ o
Different!

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.
Example #1: "0 p=20
° - 1 =5

=1 | @y p=1

Q@ r-os
* |Yp)=|+) -
p = 0.5

=—

Different!

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1: "Q p=20
o |y =11) - o p=1 One-sided error strategy to tell the difference:
: * If measured red(1), | know it’s).
o) = 1) Q p =05 * If measured blue(0), | guess it’s [Y,4).
B) = -
Q -
Different!

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #2: "Q p =7
*) =14 -
@ r=?
B =7?
=1 @7
@ r=?

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #2: "Q p =05
*) =1+) - 0
i p=0.5

B = 0.5
=11 |9 2205
Same? _o |

Distinguishing Two Qubits

Trial #1 Trial #2 Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #2: ’Q p = 0.5 @ r=?

* |Pa) =1[+) "_0 p =05 . |¢A):|+>-Q

?

'Q p=0.5
° |11[)B> = |—> — O 5 * |¢B> - |_> =
p = V.
Same? _e

p=
p
p

Distinguishing Two Qubits

Trial #1

Trial #2

We can tell if two qubits are different by collecting measurement statistics of each qubit.

'Q p=0.5
_0 p=0.5
'Q p = 0.5

Example #2:

* |Ya)=1+) -

* |Yp)=1-) <
Same?

_e p = 0.5

‘@ -1
@ r-
o P=

p=

[Ya) = [+) -
|¢B) =|-) 4
Different!

Repeat many times

Improved Measurement Strategy

Improved Measurement Strategy:

e Receive multiple copies of the two qubits.
* Choose a measurement basis.

Repeat the measurement experiment.

If py # pp then Different!

Measurement in the basis {|v,), |[v,)}:
Pa = (volYa)l?, pg = v1|Pp)|?

v =[] e =[]

pa = la'ol?, pg = |B'ol?
Change of basis: For example , we choose basis (%)
* |Pa) = apl0) + a1|1) = a'glv) + a'4]vy) rame o {|¢A> |¢A >} ¢
! / For |l/)) PI‘“I/)J')] =0 |¢B)
* |Yp) = Bol0) + B1[1) = B'olve) + B1lv1) One-sided error:{ For Itl)A), Pr[|1/ﬁ)] _ sin? 0 Y1)
B/ A -

Distinguishing Two Qubits

Trial #1 Trial #2

We can tell if two qubits are different by collecting measurement statistics of each qubit.
Example #3: 5 Q p =7
* [Ya)=10) -
Q -

* [Pp) = —]0)-

Distinguishing Two Qubits

Trial #1 Trial #2

We can tell if two qubits are different by collecting measurement statistics of each qubit.
Example #3: B Q p=1
* [Ya)=10) -
@ r-

* [Pp) = —]0)-

Same?

Distinguishing Two Qubits

Trial #1 Trial #2

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #3: 'Q p=1 0 p=?
* |Ya)=10) 7 . =[0) 7
Y4 _0 p = [Y4) = 10) _Q p=2?
B p:]_ B) p:?
* [Yp)=—]0)4 Q * |Yp)=-10)1 _
PER @ -

Same?

Distinguishing Two Qubits

Trial #1 Trial #2

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #3: 5 Q p=1 p =05
* la)=10) 7 * [Ya) =10) 7
o p=0 Q p=05 Angle: cos 8 = (Y, |pp) = —
p=1 T p = 0.5 _ A
* |yp) =—|0)- Q * sy =-10)4 _ o=mn 2
@ r=0 @ r=05 -

Same? Same?

Global Phase

Two states differing by a global factor:
[Y4) = apl0) + a;|1) and) = —(apl0) + a;|1))

No matter how we choose our measurement basis {|v,), |v1)} :

pa = [(vol(aglve) + a1lvaDI* = lagl?, pg = [(vol — (@glve) + a1 |lviDI* = [—a;l?

In fact, for any “gIoI:_)aI phase”:
« a|0)+ B|1) = e (a]|0) + S|1)) forp € R
* No experiment can distinguish [y) from e'?|) . They are identical quantum states.

. 2 : 2
pa = [vol(aglve) + “i|v1))|2 = |a6|2, P = |<Uo|el¢(“(’)|vo> + a1|v1))| = |el¢a(’)|

Note: relative phase still matters!
e a|0) +e'?B|1) for some ¢p € R

A Qubit — The Bloch Sphere

P Ww=do+pmec

« Normalized: |a|? + |B]? =1
* Global phase does not matter:
|Y) and e?[y) not distinguishable

Derive on board (in terms of two real numbers?):
a 7
s =13

i a
_ _el.qu] 0<a<1,0<¢<2m

We can visualize two real numbers!

44

A Qubit — The Bloch Sphere

We can visualize two real numbers:
‘) = |0) + B|1) € C* « a? € [0,1]: Probability of measuring |0)

- z=2(a®-3)e[-11
« Normalized: |a|? + |B]? =1 " ‘ . (a z) []
* Global phase does not matter: * e7:relative phase, 0 < ¢ < 27
|Y) and e?[y) not distinguishable

Lg] - [ei‘P Cll— az]

0<a<1,0<¢<2m) ‘ K/
\ 4

2 @ |
cos> N ~ Spherical Coordinate: (6, ¢)
=l “,| ©=osmos<o<om
el® SinE Where are |0) and |1) on Bloch sphere? "

A Qubit — The Bloch Sphere

Y =sinfsing 1
Q w-wrismee Gt A S
/|
i 0 - >
cos - ¢ i\,
-| 2 J
e SlnE X =sinf cos ¢

(0<60<m0<¢<2m)
Spherical Coordinate: (6, ¢)

What about its Cartesian coordinate: (x,y, z)?

(x,y,z) = (sinf cos ¢,sin O sin ¢, cos 0)

Density operator: |Y){(yY| = %(a, +x-0y+y-oy+2z:0y)
46

