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Mathematical Model of Quantum Computing
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Richard Feynman: “What I cannot create, I do not understand.” 

Four Principles to model quantum systems mathematically:

1. Superposition:
The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space. 

2. Composition:
The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:
Time evolution of a quantum system is a unitary process.

4. Measurement:
Readout information from a quantum state causes the superposition state to collapse/project to one of 
its basis states randomly.

(More in Lecture 5)

(More in Lecture 6)



Programming Model of Quantum Computing
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Quantum Programming:
1. Base programming language:

E.g., Python
2. Library interface and specifications:

Types (quantum/classical registers), methods (initializations, gates, measurements), constants
3. Execution model:

Ensures the proper execution of quantum programs
(Based on quantum circuit model.)

4. Backend:
Classical Simulators or Quantum Devices



Principle #1 – Superposition State
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The state of a qubit is a two-dimensional complex vector in the Hilbert Space ℋ, described by two complex numbers,
𝛼, 𝛽 ∈ ℂ, satisfying that its 2-norm: 𝛼 ! + 𝛽 ! = 1. In the Dirac notation:

𝜓 = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 ∈ ℋ

Initialize qubits: [q0, q1, q2, q3, q4]

arg: index of the qubit; label: name of the qubit

Defining and addressing qubits:
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The state of a qubit is a two-dimensional complex vector in the Hilbert Space ℋ, described by two complex numbers,
𝛼, 𝛽 ∈ ℂ, satisfying that its 2-norm: 𝛼 ! + 𝛽 ! = 1. In the Dirac notation:

𝜓 = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 ∈ ℋ

arg: index of the qubit; label: name of the qubit

state: numpy array to store the qubit’s state vector.
(optional: needed for classical simulator)
Initialized to 0 = 1

0 . Does it work for multiple qubits?

Principle #1 – Superposition State

Defining and addressing qubits:



Principle #2 – Composition
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A Quantum Register for tracking multiple qubits (size: number of qubits):

E.g., for two separable qubits: 𝜓" ∈ ℋ" and 𝜓# ∈ ℋ#:

𝜓"# = 𝜓" ⊗ 𝜓# =
𝛼$
𝛼% ⊗ 𝛽$

𝛽%
=

𝛼$
𝛽$
𝛽%

𝛼%
𝛽$
𝛽%

=

𝛼$𝛽$
𝛼$𝛽%
𝛼%𝛽$
𝛼%𝛽%

Example: 𝜓"# = 1
0 ⊗ 1/ 2

1/ 2
=

1/ 2
1/ 2
0
0

. 𝜓#" = 1/ 2
1/ 2

⊗ 1
0 =

1/ 2
0

1/√2
0

.

Why does ordering matter?

The joint system is in  ℋ"# = ℋ"⊗ℋ#.

Tensor Product and Entanglement

Ordered array of qubits: [q0, q1, q2, q3, q4] Joint state: q0.state ⊗ q1.state ⊗⋯⊗ q4.state



7

“Entangled state”

We need to track the joint state of the entire quantum register 
together, not qubit by qubit!Entangled state or product state?

• 000

• !
"
00 + !

"
01 + !

"
10 + !

"
11

• !
"
00 + !

"
01 + !

"
10 − !

"
11

• #
$
00 − %

$
01 + %

$
10 − "

$
11

What about: %
!
00 + %

!
11 =

1/ 2
0
0

1/ 2

? It belongs to ℋ"⊗ℋ#, but no longer separable: 𝜓& ⊗ 𝜓' .

Principle #2 – Composition
Tensor Product and Entanglement



Principle #3 – Transformation
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(Unitary matrix: 𝑈!" = 𝑈# )

𝜓$ =
𝛼
𝛽 𝜓( = 𝛾

𝛿

Evolve

A quantum state evolves by unitary transformation:
𝜓% = 𝑈|𝜓$⟩

Assuming it evolves for 𝑇 discrete steps:
𝜓( = 𝑈( …𝑈!𝑈%|𝜓$⟩

Multiplying unitary matrices to the state:

𝜓 = 𝑆𝐻 0 = 1 0
0 𝑖

1
2
1 1
1 −1

1
0 = 1 0

0 𝑖
⁄1 2
⁄1 2

= ⁄1 2
⁄𝑖 2

𝐻 𝑆0 𝜓 = ?

Input state Output stateGate #1 Gate #2

Unitary Evolution

Our first (sequential) quantum circuit:

Hadamard gate: 

𝐻 = "
$
1 1
1 −1

Phase gate: 

𝑆 = 1 0
0 𝑖

time

time

𝐻𝑆 0 or 𝑆𝐻 0 ?



More Single-Qubit Gates

Hadamard matrix: 

𝐻 = "
$
1 1
1 −1

Pauli Z matrix:

𝜎% = 𝑍 = 1 0
0 −1

𝐻

𝑍

Identity matrix:

𝜎& = 𝐼 = 1 0
0 1

𝐼

NOP (no-op)

For any |𝜓⟩, 𝐼 𝜓 = |𝜓⟩

Pauli X matrix:

𝜎' = 𝑋 = 0 1
1 0

𝑋

NOT (bit flip)
• 𝑋 0 = 1
• 𝑋 1 = |0⟩
• 𝑋 𝛼 0 + 𝛽 1 = 𝛼𝑋 0 + 𝛽𝑋 1 = 𝛼 1 + 𝛽 0

Hadamard
• 𝐻 0 = $ ) %

!
≡ |+⟩

• 𝐻 1 = $ * %
!

≡ |−⟩

Phase flip • 𝑍 0 = 0
• 𝑍 1 = −|1⟩
• 𝑍 𝛼 0 + 𝛽 1 = 𝛼𝑍 0 + 𝛽𝑍 1 = 𝛼 0 − 𝛽 1

𝐼 = 𝐼+ = 𝐼*%

𝑋 = 𝑋+ = 𝑋*%

𝐻 = 𝐻+ = 𝐻*%

𝑍 = 𝑍+ = 𝑍*%



More Single-Qubit Gates

Phase gate

𝑆# = 1 0
0 −𝑖

𝑆+ • 𝑆+ 𝛼 0 + 𝛽 1 = 𝛼 0 − 𝑖𝛽 1

Phase matrix: 

𝑆 = 1 0
0 𝑖

𝑆
• 𝑆 0 = 0
• 𝑆 1 = 𝑖|1⟩
• 𝑆 𝛼 0 + 𝛽 1 = 𝛼𝑆 0 + 𝛽𝑆 1 = 𝛼 0 + 𝑖𝛽 1

𝑍 = 𝑆!

T matrix:

𝑇 = 1 0
0 𝑒()/+

𝑇

T gate

• 𝑇 𝛼 0 + 𝛽 1 = 𝛼 0 + 𝑒,-//𝛽 1

𝑇# = 1 0
0 𝑒!()/+

𝑇+ • 𝑇+ 𝛼 0 + 𝛽 1 = 𝛼 0 + 𝑒*,-//𝛽 1

𝑍 = 𝑆! = 𝑇/



00            01       10            11
00

01

10

11

Interaction between Two Qubits

CX =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

.

Controlled-X / CX / CNOT gate:

“Entangling gate”

“Quantum if-else”:
• If A is 0: do nothing.
• If A is 1: flip B.

𝐻0

0
𝜓

A two-qubit quantum program:

𝜓 = 𝐶𝑋$,%𝐻$ 00

= 𝐶𝑋$,% + ⊗ |0⟩

= $$ ) %%
!

A

B

Examples:

𝐶𝑋$,% 00 = 00
𝐶𝑋$,% 01 = 01
𝐶𝑋$,% 10 = 11
𝐶𝑋$,% 11 = 10

𝐶𝑋$,% 0.6 00 + 0.8 10
= 0.6 00 + 0.8 11



00            01       10            11
00

01

10

11

Interaction between Two Qubits

SWAP gate:

Swapping A and B:
• If separable state: 

• If entangled state:

A

B

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

.

SWAP$,% 𝜓" ⊗ |𝜓#⟩ = 𝜓# ⊗ |𝜓"⟩

SWAP$,% 00 = 00
SWAP$,% 01 = 10
SWAP$,% 10 = 01
SWAP$,% 11 = 11

𝐶𝑋$,% =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

.

=

𝐶𝑋%,$ =
1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

.⇒

FROM

TO

Derive on board: What are the following transformations? 

𝑈 𝑈 ⋅ SWAP$,% =

𝑢$$ 𝑢$!
𝑢%$ 𝑢%!

𝑢$% 𝑢$1
𝑢%% 𝑢%1

𝑢!$ 𝑢!!
𝑢1$ 𝑢1!

𝑢!% 𝑢!1
𝑢1% 𝑢11

.

𝑈 SWAP$,% ⋅ 𝑈 =

𝑢$$ 𝑢$%
𝑢!$ 𝑢!%

𝑢$! 𝑢$1
𝑢!! 𝑢!1

𝑢%$ 𝑢%%
𝑢1$ 𝑢1%

𝑢%! 𝑢%1
𝑢1! 𝑢11

.



Instruction Set

CX =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

.

Two-qubit gates:
Hadamard gate: 

𝐻 = "
$
1 1
1 −1

Phase gate: 

𝑆 = 1 0
0 𝑖

Single-qubit gates:

Idle gate:

𝜎& = 𝐼 = 1 0
0 1

Pauli X gate (NOT):

𝜎' = 𝑋 = 0 1
1 0

Pauli Y gate:

𝜎, = 𝑌 = 0 −𝑖
𝑖 0

Pauli Z gate:

𝜎% = 𝑍 = 1 0
0 −1

𝐻

𝑆

𝐼

𝑋

𝑌

𝑍

CZ =
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

.

SWAP =
1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

.

… …



Parallel gates on two qubits:

𝐻

𝑆

𝜓"

𝜓#

Parallel Execution of Quantum Gates

𝐻⊗ 𝑆 =
1
2

1 0
0 𝑖

1 0
0 𝑖

1 0
0 𝑖

−1 0
0 −𝑖

What’s the joint transformation?

𝐻

𝐼

𝜓"

𝜓#

𝐼

𝑆

𝐼

𝑆

𝜓"

𝜓#

𝐻

𝐼

=

=
𝐻⊗ 𝐼 =

1
2

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

𝐼 ⊗ 𝑆 =
1 0
0 𝑖

0 0
0 0

0 0
0 0

1 0
0 𝑖𝐻 ⊗ 𝑆 = (𝐼 ⊗ 𝑆)(𝐻 ⊗ 𝐼) = 𝐻 ⊗ 𝐼 𝐼 ⊗ 𝑆



Principle #4 – Measurement
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Measure 𝜓 = 𝛼 0 + 𝛽 1 = $ ), %
!

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.
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Measure 𝜓 = 𝛼 0 + 𝛽 1 = $ ), %
!

Principle #4 – Measurement

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.

𝐻 𝑆0 0/1
After: Becomes either 
0 or 1 randomly.

𝜓 =
0 + 𝑖 1

2
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Measure 𝜓 = 𝛼 0 + 𝛽 1 = $ ), %
!

0

1

𝑝 = 𝛼 !

𝑝 = 𝛽 !

Measurement outcome:

Principle #4 – Measurement

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.

0

1

𝑝 = 0.5

𝑝 = 0.5

After measurement:

Random

Basis: {|0⟩, |1⟩}
🧐

𝐻 𝑆0 0/1

𝜓 =
0 + 𝑖 1

2

After: Becomes either 
0 or 1 randomly.
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Measure 𝜓 = 𝛼 0 + 𝛽 1 = $ ), %
!

0

1

𝑝 = 𝛼 !

𝑝 = 𝛽 !

Principle #4 – Measurement

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.

Start over and prepare the same 𝝍 :

Random

Basis: {|0⟩, |1⟩}

𝐻 𝑆0 0/1

Measurement outcome:
0

1

𝑝 = 0.5

𝑝 = 0.5

𝜓 =
0 + 𝑖 1

2

After: Becomes either 
0 or 1 randomly.
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Measure 𝜓 = 𝛼 0 + 𝛽 1 = $ ), %
!

0

1

𝑝 = 𝛼 !

𝑝 = 𝛽 !

Principle #4 – Measurement

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.

After measurement:

Random

Basis: {|0⟩, |1⟩}
🧐

𝐻 𝑆0 0/1

Measurement outcome:
0

1

𝑝 = 0.5

𝑝 = 0.5

𝜓 =
0 + 𝑖 1

2

After: Becomes either 
0 or 1 randomly.

Inherently probabilistic:
• Produces a random bit
• Collapses the qubit
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Principle #4 – Measurement

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.

𝐻 𝑆0 0/1

Measurement outcome:
0

1

𝑝 = 0.5

𝑝 = 0.5

𝜓 =
0 + 𝑖 1

2

Basis #2: {|+⟩, |−⟩}

𝑝 = 𝛼′ !

𝑝 = 𝛽′ !

🧐

Measure 𝜓 = 𝛼 0 + 𝛽 1 = 𝛼′ + + 𝛽′ −

Measure in a different (orthonormal) basis:

+

−

After: Becomes either 
0 or 1 randomly.
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Measure 𝜓 = 𝛼 0 + 𝛽 1 = 𝛼′ + + 𝛽′ −

Basis #2: {|+⟩, |−⟩}

𝑝 = 𝛼′ !

𝑝 = 𝛽′ !

Principle #4 – Measurement

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

by “probing/disturbing” its quantum state.

Measure in a different basis:

🧐

𝐻 𝑆0 0/1

Measurement outcome:
0 𝑝 = 0.5

𝑝 = 0.5

𝜓 =
0 + 𝑖 1

2

1

𝐻 𝑆0 +/-

Measurement outcome:
𝑝 = 0.5

𝑝 = 0.5

𝜓 =
(1 + 𝑖) + + (1 − 𝑖) −

2 +

−

+

−

After: Becomes either 
0 or 1 randomly.

After: Becomes either 
+ or − randomly.



Putting it all together – QuantumCircuit

𝐻0

0

0/1

Quantum circuit:

Quantum program:
Initialization

pc

𝜓𝑆



Execution of QuantumCircuit

𝐻0

0

0/1

Quantum circuit:

Quantum program:
Parallel Gates: 𝐻⊗ 𝑆

pc

𝐻⊗ 𝑆 =
1
2

1 0
0 𝑖

1 0
0 𝑖

1 0
0 𝑖

−1 0
0 −𝑖

Joint transformation:

𝜓𝑆

Instruction-level parallelism (ILP)



Putting it all together – QuantumCircuit

𝐻0

0

0/1

Quantum circuit:

Quantum program:
Two-qubit gate: CNOT

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

.𝑪𝑿𝟎,𝟏 Gate:

pc

𝜓𝑆



Gates in a Multi-Qubit Circuit

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

000   001   010   011  100  101   110  111
000
001
010
011
100
101
110
111

What about the following gates in a qc=QuantumCircuit(3,3)?

Homework: tensorizeGate(). 
Expand a gate into a 24×24 matrix for an 𝑛-qubit circuit. 

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

.

𝑪𝑿𝟎,𝟏 Gate:

qc.cx(1,0): 𝐶𝑋%,$⊗ 𝐼 qc.cx(0,2): SWAP%,! ⋅ 𝐶𝑋$,%⊗ 𝐼 ⋅ SWAP%,!

𝑪𝑿𝟏,𝟎 Gate:

000   001   010   011  100  101   110  111
000
001
010
011
100
101
110
111

Identity on untouched qubit(s).



Putting it all together – QuantumCircuit

𝐻0

0

0/1

Quantum circuit:

Quantum program:
Measure + Idle

pc

𝜓𝑆



Putting it all together – QuantumCircuit

𝐻0

0 𝜓

0/1

Quantum circuit:

Quantum program:
Output

𝑆

pc

Classical

Quantum

0/1
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• Distinguishing two qubits
• Visualizing one qubit

COMING UP NEXT



Distinguishing Two Qubits

Assume |𝜓"⟩, 𝜓# ∈ ℋ with real amplitudes.

|𝜓"⟩

|𝜓#⟩
𝜃

Length: 𝜓" 𝜓" = 𝜓# 𝜓# = 1
Angle: cos 𝜃 = 𝜓" 𝜓#
Qubits are the same if 𝜃 = 0

Can we tell if 𝜃 = 0 by measuring the qubits?

Measurement in the standard basis:

𝜓"
𝑝"

1 − 𝑝"

𝑝#

1 − 𝑝#

0

1

0

1
𝜓#

𝑝" = 0|𝜓" ! = 𝛼$ !, 𝑝# = 0|𝜓# ! = 𝛽$ !

Measurement Strategy:
• Receive multiple copies of the two qubits.
• Repeat the measurement experiment.
• If 𝑝" ≠ 𝑝# then Different!

𝜓" =
𝛼$
𝛼% 𝜓# = 𝛽$

𝛽%



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:
• 𝜓" = 1

• 𝜓# = |+⟩

𝑝 = ?

𝑝 = ?

𝑝 = ?

𝑝 = ?

Trial #1 Trial #2

…

0

1

0

1

Repeat many times

Different!



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:
• 𝜓" = 1

• 𝜓# = |+⟩

𝑝 = 0

𝑝 = 1

𝑝 = 0.5

𝑝 = 0.5
Different!

Trial #1 Trial #2

…

0

1

0

1

Repeat many times



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:
• 𝜓" = 1

• 𝜓# = |+⟩

𝑝 = 0

𝑝 = 1

𝑝 = 0.5

𝑝 = 0.5
Different!

Trial #1 Trial #2

…

0

1

0

1

Repeat many times



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:
• 𝜓" = 1

• 𝜓# = |+⟩

𝑝 = 0

𝑝 = 1

𝑝 = 0.5

𝑝 = 0.5
Different!

Trial #1 Trial #2

…

0

1

0

1

Repeat many times

One-sided error strategy to tell the difference:
• If measured red(1), I know it’s 𝜓# .
• If measured blue(0), I guess it’s 𝜓" .



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Trial #1 Trial #2

…

Repeat many times

Example #2:
• 𝜓" = +

• 𝜓# = |−⟩

𝑝 = ?

𝑝 = ?

𝑝 = ?

𝑝 = ?

0

1

0

1



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Trial #1 Trial #2

…

Repeat many times

Example #2:
• 𝜓" = +

• 𝜓# = |−⟩

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5
Same?

0

1

0

1



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Trial #1 Trial #2

…

Repeat many times

Example #2:
• 𝜓" = +

• 𝜓# = |−⟩

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5
Same?

0

1

0

1
• 𝜓" = +

• 𝜓# = |−⟩

𝑝 = ?

𝑝 = ?

𝑝 = ?

𝑝 = ?

+

−

+

−



Distinguishing Two Qubits

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Trial #1 Trial #2

…

Repeat many times

Example #2:
• 𝜓" = +

• 𝜓# = |−⟩

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5
Same?

0

1

0

1
• 𝜓" = +

• 𝜓# = |−⟩

𝑝 = 1

𝑝 = 0

𝑝 = 0

𝑝 = 1
Different!

+

−

+

−



Improved Measurement Strategy

Change of basis:
• 𝜓" = 𝛼$ 0 + 𝛼% 1 = 𝛼′$ 𝑣$ + 𝛼′% 𝑣%

• 𝜓# = 𝛽$ 0 + 𝛽% 1 = 𝛽′$ 𝑣$ + 𝛽′% 𝑣%

Improved Measurement Strategy:
• Receive multiple copies of the two qubits.
• Choose a measurement basis.
• Repeat the measurement experiment.
• If 𝑝" ≠ 𝑝# then Different!

Measurement in the basis 𝑣$ , 𝑣% :
𝑝" = 𝑣$|𝜓" !, 𝑝# = 𝑣%|𝜓# !

𝜓" =
𝛼$
𝛼% 𝜓# = 𝛽$

𝛽% 𝑝" = 𝛼′$ !, 𝑝# = 𝛽′$ !

For example , we choose basis 𝜓" , 𝜓"5 : |𝜓"⟩

|𝜓#⟩
𝜃

|𝜓"5⟩One-sided error: For 𝜓- , Pr 𝜓-. = 0
For 𝜓/ , Pr 𝜓-. = sin$ 𝜃



Distinguishing Two Qubits

Example #3:
• 𝜓" = 0

• 𝜓# = −|0⟩

𝑝 = ?

𝑝 = ?

𝑝 = ?

𝑝 = ?

Trial #1 Trial #2

…

We can tell if two qubits are different by collecting measurement statistics of each qubit.

0

1

0

1



Distinguishing Two Qubits

Example #3:
• 𝜓" = 0

• 𝜓# = −|0⟩

𝑝 = 1

𝑝 = 0

𝑝 = 1

𝑝 = 0
Same?

Trial #1 Trial #2

…

We can tell if two qubits are different by collecting measurement statistics of each qubit.

0

1

0

1



Distinguishing Two Qubits

Example #3:
• 𝜓" = 0

• 𝜓# = −|0⟩

𝑝 = 1

𝑝 = 0

𝑝 = 1

𝑝 = 0

• 𝜓" = 0

• 𝜓# = −|0⟩

𝑝 = ?

𝑝 = ?

𝑝 = ?

𝑝 = ?
Same?

Trial #1 Trial #2

…

We can tell if two qubits are different by collecting measurement statistics of each qubit.

0

1

0

1

+

−

+

−



Distinguishing Two Qubits

Example #3:
• 𝜓" = 0

• 𝜓# = −|0⟩

𝑝 = 1

𝑝 = 0

𝑝 = 1

𝑝 = 0

• 𝜓" = 0

• 𝜓# = −|0⟩

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5

𝑝 = 0.5
Same? Same?

Trial #1 Trial #2

…

We can tell if two qubits are different by collecting measurement statistics of each qubit.

0

1

0

1

+

−

+

− Angle: cos 𝜃 = 𝜓" 𝜓# = −1

𝜃 = 𝜋
🤔



Global Phase

In fact, for any “global phase”: 
• 𝛼 0 + 𝛽|1⟩ ≡ 𝑒,6(𝛼 0 + 𝛽|1⟩) for 𝜙 ∈ ℝ
• No experiment can distinguish 𝜓 from 𝑒,6|𝜓⟩ . They are identical quantum states.
𝑝" = 𝑣$ (𝛼$7 𝑣$ + 𝛼%7 |𝑣%⟩) ! = 𝛼$7 !, 𝑝# = 𝑣$ 𝑒,6(𝛼$7 𝑣$ + 𝛼%7 |𝑣%⟩)

! = 𝑒,6𝛼$7
!

Note: relative phase still matters! 
• 𝛼 0 + 𝑒,6𝛽|1⟩ for some 𝜙 ∈ ℝ

Two states differing by a global factor:
𝜓" = 𝛼$ 0 + 𝛼%|1⟩ and 𝜓# = −(𝛼$ 0 + 𝛼%|1⟩)

No matter how we choose our measurement basis 𝑣$ , 𝑣% :

𝑝" = 𝑣$ (𝛼$7 𝑣$ + 𝛼%7 |𝑣%⟩) ! = 𝛼$7 !, 𝑝# = 𝑣$ − (𝛼$7 𝑣$ + 𝛼%7 |𝑣%⟩) ! = −𝛼$7 !
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𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ!

• Normalized: 𝛼 ! + 𝛽 ! = 1
• Global phase does not matter:

𝜓 and 𝑒,6 𝜓 not distinguishable 

Derive on board (in terms of two real numbers?):
𝛼
𝛽 = ?

?

0 ≤ 𝑎 ≤ 1, 0 ≤ 𝜙 < 2𝜋=
𝑎

𝑒,6 1 − 𝑎!

We can visualize two real numbers!
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𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ!

• Normalized: 𝛼 ! + 𝛽 ! = 1
• Global phase does not matter:

𝜓 and 𝑒,6 𝜓 not distinguishable 

𝛼
𝛽 =

𝑎
𝑒,6 1 − 𝑎!

(0 ≤ 𝑎 ≤ 1, 0 ≤ 𝜙 < 2𝜋)

• 𝑎! ∈ [0,1]: Probability of measuring |0⟩
• 𝑧 = 2 𝑎! − %

!
∈ [−1,1]

• 𝑒,6: relative phase, 0 ≤ 𝜙 < 2𝜋

We can visualize two real numbers:

𝑧
𝜙

0

1

+1

-1

𝑥

𝑦

y

𝜙

𝜃

Where are 0 and 1 on Bloch sphere? 
=

cos
𝜃
2

𝑒,6 sin
𝜃
2

(0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋)
Spherical Coordinate: (𝜃, 𝜙)
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𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ!

y

𝜙

𝜃

=
cos

𝜃
2

𝑒,6 sin
𝜃
2

(0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋)
Spherical Coordinate: (𝜃, 𝜙)

What about its Cartesian coordinate: (𝑥, 𝑦, 𝑧)?

𝑥, 𝑦, 𝑧 = (sin 𝜃 cos𝜙 , sin 𝜃 sin𝜙 , cos 𝜃)

y

𝜙

𝜃

𝑧 = cos 𝜃
1

sin 𝜃

𝜙
sin
𝜃

𝑥 = sin 𝜃 cos𝜙

𝑦 = sin 𝜃 sin𝜙

Density operator: 𝜓 𝜓 = %
!
𝜎8 + 𝑥 ⋅ 𝜎9 + 𝑦 ⋅ 𝜎: + 𝑧 ⋅ 𝜎;


