

Quantum Circuits and Quantum Programming

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

Mathematical Model of Quantum Computing

Four Principles to model quantum systems mathematically:

1. Superposition:

The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space.

2. Composition:

The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation: (More in Lecture 5)

Time evolution of a quantum system is a unitary process.

4. Measurement: (More in Lecture 6)

Readout information from a quantum state causes the superposition state to collapse/project to one of its basis states randomly.

Richard Feynman: "What I cannot create, I do not understand."

Programming Model of Quantum Computing

Quantum Programming:

1. Base programming language:

E.g., Python

2. Library interface and specifications:

Types (quantum/classical registers), methods (initializations, gates, measurements), constants

3. Execution model:

Ensures the proper execution of quantum programs (Based on quantum circuit model.)

4. Backend:

Classical Simulators or Quantum Devices

```
def testCircuit():
    qc = QuantumCircuit(2,2)
    qc.h(0)
    qc.s(1)
    qc.cx(0,1)
    qc.measure([0],[0])
    # print(qc)
    outcome = qc.simulate()
```

Principle #1 – Superposition State

The **state of a qubit** is a two-dimensional complex vector in the **Hilbert Space** \mathcal{H} , described by two complex numbers, $\alpha, \beta \in \mathbb{C}$, satisfying that its 2-norm: $|\alpha|^2 + |\beta|^2 = 1$. In the Dirac notation:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathcal{H}$$

Defining and addressing qubits:

```
class Qubit(object):
    """Qubit object"""
    def __init__(self, arg, label='q'):
        super(Qubit, self).__init__()
        self.arg = arg
        self.label = label
```

arg: index of the qubit; label: name of the qubit

Initialize qubits: [q0, q1, q2, q3, q4]

qubit_array = [Qubit(i) for i in range(5)]

Principle #1 – Superposition State

The **state of a qubit** is a two-dimensional complex vector in the **Hilbert Space** \mathcal{H} , described by two complex numbers, $\alpha, \beta \in \mathbb{C}$, satisfying that its 2-norm: $|\alpha|^2 + |\beta|^2 = 1$. In the Dirac notation:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathcal{H}$$

Defining and addressing qubits:

```
class Qubit(object):
    """Qubit object"""
    def __init__(self, arg, label='q'):
        super(Qubit, self).__init__()
        self.arg = arg
        self.label = label
        self.state = np.array([1, 0], dtype=complex)
```

arg: index of the qubit; label: name of the qubit

state: numpy array to store the qubit's state vector. (optional: needed for classical simulator)

Initialized to $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Does it work for multiple qubits?

Principle #2 – Composition

Tensor Product and Entanglement

A Quantum Register for tracking multiple qubits (size: number of qubits):

```
class QuantumRegister(object):
    """QuantumRegister is where we keep track of qubits"""
    def __init__(self, num_q, label='qreg'):
        super(QuantumRegister, self).__init__()
        self.size = num_q
        self.label = label
        self.array = [Qubit(i) for i in range(num_q)]
```

The joint system is in $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$.

E.g., for two separable qubits: $|\psi_A\rangle \in \mathcal{H}_A$ and $|\psi_B\rangle \in \mathcal{H}_B$:

$$|\psi_{AB}\rangle = |\psi_{A}\rangle \otimes |\psi_{B}\rangle = \begin{bmatrix} \alpha_{0} \\ \alpha_{1} \end{bmatrix} \otimes \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \begin{bmatrix} \alpha_{0} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} \\ \alpha_{1} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \alpha_{0}\beta_{0} \\ \alpha_{0}\beta_{1} \\ \alpha_{1}\beta_{0} \\ \alpha_{1}\beta_{1} \end{bmatrix}$$

Ordered array of qubits: [q0, q1, q2, q3, q4]

Joint state: q0.state \otimes q1.state $\otimes \cdots \otimes$ q4.state

Why does ordering matter?

Example:
$$|\psi_{AB}\rangle = \begin{bmatrix}1\\0\end{bmatrix} \otimes \begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix} = \begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\\0\\0\end{bmatrix}$$
. $|\psi_{BA}\rangle = \begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix} \otimes \begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1/\sqrt{2}\\0\\1/\sqrt{2}\\0\end{bmatrix}$.

6

Principle #2 – Composition

Tensor Product and Entanglement

Tensor Product and Entanglement What about:
$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 0 \\ 1/\sqrt{2} \end{bmatrix}$$
? It belongs to $\mathcal{H}_A \otimes \mathcal{H}_B$, but no longer separable: $\boxed{\psi_A} \otimes \boxed{\psi_B}$. "Entangled state"

Entangled state or **product state**?

- |000**
- $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$
- $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle \frac{1}{2}|11\rangle$
- $\frac{3}{5}|00\rangle \frac{\sqrt{6}}{5}|01\rangle + \frac{\sqrt{6}}{5}|10\rangle \frac{2}{5}|11\rangle$

We need to track the **joint state** of the entire quantum register together, not qubit by qubit!

```
class Qubit(object):
    """Oubit object"""
    def __init__(self, arg, label='q'):
        super(Qubit, self). init ()
        self.arg = arg
        self.label = label
class QuantumRegister(object):
    """QuantumRegister is where we keep track of gubits"""
    def __init__(self, num_q, label='qreg'):
        super(QuantumRegister, self).__init__()
        self.size = num q
        self label = label
        self.array = [Qubit(i) for i in range(num_q)]
        self.state = np.array([1] + [0] * (2 ** num_q - 1), dtype=complex)
```

Principle #3 – Transformation

Unitary Evolution

A quantum state evolves by **unitary transformation**:

$$|\psi_1\rangle = U|\psi_0\rangle$$

(Unitary matrix: $U^{-1} = U^{\dagger}$)

Assuming it evolves for *T* discrete steps:

$$|\psi_T\rangle = U_T \dots U_2 U_1 |\psi_0\rangle$$

$$\downarrow \text{time}$$

Our first (sequential) quantum circuit:

Hadamard gate:

Phase gate:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Multiplying unitary matrices to the state:

$$|\psi\rangle = SH|0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{bmatrix}$$

More Single-Qubit Gates

NOP (no-op)

Identity matrix:

$$\sigma_I = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\sigma_I = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ For any $|\psi\rangle$, $I|\psi\rangle = |\psi\rangle$

$$I = I^{\dagger} = I^{-1}$$

NOT (bit flip)

$$\sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

•
$$X|0\rangle = |1\rangle$$

•
$$X|1\rangle = |0\rangle$$

Pauli X matrix:

$$\sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
• $X|0\rangle = |1\rangle$
• $X|1\rangle = |0\rangle$
• $X(\alpha|0\rangle + \beta|1\rangle) = \alpha X|0\rangle + \beta X|1\rangle = \alpha|1\rangle + \beta|0\rangle$

$$X = X^{\dagger} = X^{-1}$$

Hadamard

Hadamard matrix:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

•
$$H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \equiv |+\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \bullet \quad H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \equiv |-\rangle$$

$$H = H^{\dagger} = H^{-1}$$

Phase flip

$$\sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

•
$$Z|0\rangle = |0\rangle$$

•
$$Z|1\rangle = -|1\rangle$$

Pauli Z matrix:

$$\sigma_{Z} = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
• $Z|0\rangle = |0\rangle$
• $Z|1\rangle = -|1\rangle$
• $Z(\alpha|0\rangle + \beta|1\rangle) = \alpha Z|0\rangle + \beta Z|1\rangle = \alpha|0\rangle - \beta|1\rangle$

$$Z=Z^\dagger=Z^{-1}$$

More Single-Qubit Gates

Phase gate

Phase matrix:

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

$$S(\alpha | 0 \rangle + \beta | 0 \rangle$$

Phase matrix:

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

•
$$S|0\rangle = |0\rangle$$

•
$$S|1\rangle = i|1\rangle$$

•
$$S(\alpha|0\rangle + \beta|1\rangle) = \alpha S|0\rangle + \beta S|1\rangle = \alpha|0\rangle + i\beta|1\rangle$$

$$Z = S^2$$

$$S^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$

$$\begin{bmatrix} S^{\dagger} & & \\ & & \\ & & -i \end{bmatrix} \qquad \bullet \quad S^{\dagger}(\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle - i\beta|1\rangle$$

T gate

T matrix:

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \qquad \bullet \quad T(\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle + e^{i\pi/4}\beta|1\rangle$$

$$Z = S^2 = T^4$$

$$T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}$$

$$T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix} \qquad \bullet \quad T^{\dagger}(\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle + e^{-i\pi/4}\beta|1\rangle$$

Interaction between Two Qubits

Controlled-X / CX / CNOT gate:

"Quantum if-else":

- If A is 0: do nothing.
- If A is 1: flip B.

$$CX = \begin{bmatrix} 00 & 01 & 10 & 11 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Examples:

$$CX_{0,1}|00\rangle = |00\rangle$$

 $CX_{0,1}|01\rangle = |01\rangle$
 $CX_{0,1}|10\rangle = |11\rangle$
 $CX_{0,1}|11\rangle = |10\rangle$

$$CX_{0,1}(0.6|00\rangle + 0.8|10\rangle)$$

= $0.6|00\rangle + 0.8|11\rangle$

A two-qubit quantum program:

$$|\psi\rangle = CX_{0,1}H_0|00\rangle$$
$$= CX_{0,1}(|+\rangle \otimes |0\rangle)$$
$$= \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

"Entangling gate"

Interaction between Two Qubits

Swapping A and B:

If separable state:

$$SWAP_{0,1}(|\psi_A\rangle \otimes |\psi_B\rangle) = |\psi_B\rangle \otimes |\psi_A\rangle$$

• If entangled state:

$$SWAP_{0,1}(|00\rangle) = |00\rangle$$

 $SWAP_{0,1}(|01\rangle) = |10\rangle$
 $SWAP_{0,1}(|10\rangle) = |01\rangle$
 $SWAP_{0,1}(|11\rangle) = |11\rangle$

<u>Derive on board:</u> What are the following transformations?

$$CX_{0,1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}. \quad \Rightarrow \quad CX_{1,0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Instruction Set

Single-qubit gates:

Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Phase gate:

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Idle gate:

$$\sigma_I = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Pauli X gate (NOT):

$$\sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Pauli Y gate:

$$\sigma_Y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Pauli Z gate:

$$\sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Define Gate by its name, kind (number of qubit), and matrix
HGate = Gate('h', 1, 1/np.sqrt(2) * np.array([[1,1],[1,-1]], dtype=complex))

Two-qubit gates:

$$CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parallel Execution of Quantum Gates

Parallel gates on two qubits:

$$H \otimes S = (I \otimes S)(H \otimes I) = (H \otimes I)(I \otimes S)$$

$$H \otimes I = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$I \otimes S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix}$$

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

After measurement:

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

Start over and prepare the same $|\psi\rangle$:

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

After measurement:

Inherently probabilistic:

- Produces a random bit
- Collapses the qubit

class QuantumRegister(object):

Measurement outcome:

p = 0.5

19

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha'|+\rangle + \beta'|-\rangle$$

Measure in a different (orthonormal) basis:

by "probing/disturbing" its quantum state.

Measuring a qubit collapses/projects the superposition state to a basis state randomly.

Measure
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha'|+\rangle + \beta'|-\rangle$$

Measure in a different basis:

Measurement outcome:

$$p=0.5$$

$$p_{21} = 0.5$$

Putting it all together – QuantumCircuit

Quantum circuit:

Initialization

```
def testCircuit():
    qc = QuantumCircuit(2,2)
    qc.h(0)
    qc.s(1)
    qc.cx(0,1)
    qc.measure([0],[0])
    # print(qc)
    outcome = qc.simulate()
```

Execution of QuantumCircuit

Quantum circuit:

Joint transformation: $H \otimes S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & i & 0 & i \\ 1 & 0 & -1 & 0 \\ 0 & i & 0 & -i \end{bmatrix}$

Parallel Gates: $H \otimes S$

```
def testCircuit():
    qc = QuantumCircuit(2,2)
    qc.h(0)
    qc.s(1)
    qc.cx(0,1)
    qc.measure([0],[0])
    # print(qc)
    outcome = qc.simulate()
Instruction-level parallelism (ILP)
```

Putting it all together – QuantumCircuit

Quantum circuit:

Two-qubit gate: CNOT

```
pc

def testCircuit():
    qc = QuantumCircuit(2,2)
    qc.h(0)
    qc.s(1)
    qc.cx(0,1)
    qc.measure([0],[0])
    # print(qc)
    outcome = qc.simulate()
```

Gates in a Multi-Qubit Circuit

$CX_{0,1}$ Gate:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$CX_{1,0}$ Gate:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

What about the following gates in a qc=QuantumCircuit(3,3)?

qc.cx(1,0): $CX_{1,0} \otimes I$

Identity on untouched qubit(s).

qc.cx(0,2): SWAP_{1,2} \cdot ($CX_{0,1} \otimes I$) \cdot SWAP_{1,2}

Homework: tensorizeGate().

Expand a gate into a $2^n \times 2^n$ matrix for an n-qubit circuit.

Putting it all together – QuantumCircuit

Quantum circuit:


```
def testCircuit():
    qc = QuantumCircuit(2,2)
    qc.h(0)
    qc.s(1)
    qc.cx(0,1)
    qc.measure([0],[0])
    # print(qc)
    outcome = qc.simulate()
```

Putting it all together – QuantumCircuit


```
def testCircuit():
    qc = QuantumCircuit(2,2)
    qc.h(0)
    qc.s(1)
    qc.cx(0,1)
    qc.measure([0],[0])
    # print(qc)
    outcome = qc.simulate()
```

```
class QuantumCircuit(object):
    """QuantumCircuit""
    def __init__(self, num_q, num_c):
        super(QuantumCircuit, self). init_()
        self.num_q = num_q
        self.qubits = QuantumRegister(num q) # initialized gubits
        self.num_c = num_c
        self.cbits = ClassicalRegister(num_c) # initialized cbits
        self.circuit = [] # sequence of instructions
        self.pc = 0 # program counter
        self.curr state = self.qubits.state # state up to the point of program counter
    def _append(self, operation, q_array, c_array):
        # Add new instruction to circuit
        instruction = [operation, q_array, c_array]
        self.circuit.append(instruction)
    # Hadamard gate
    def h(self, qubit):
        # Define Gate by its name, kind (number of qubit), and matrix
       HGate = Gate('h', 1, 1/np.sqrt(2) * np.array([[1,1],[1,-1]], dtype=complex))
        self._append(HGate, [qubit], [])
    # Measure qubits in array 'qubits' and store classical outcome in 'cbits'
    # Note: Action of measurement will be defined in simulate function.
    def measure(self, qubits, cbits):
        assert(len(qubits) == len(cbits))
       Measure = Gate('measure', len(qubits), None)
        self._append(Measure, qubits, cbits)
```

COMING UP NEXT

- Distinguishing two qubits
- Visualizing one qubit

$$|\psi_A\rangle = \begin{bmatrix} lpha_0 \\ lpha_1 \end{bmatrix} \qquad |\psi_B\rangle = \begin{bmatrix} eta_0 \\ eta_1 \end{bmatrix}$$

$$|\psi_A
angle \quad \begin{cases} egin{array}{cccc} 0 & p_A & & \\ 1 & 1-p_A & & \\ & & & \\ \end{cases} \psi_B
angle \quad \begin{cases} egin{array}{cccc} 0 & p_B & & \\ & & & \\ \end{cases} & 1-p_B \end{cases}$$

Assume $|\psi_A\rangle$, $|\psi_B\rangle \in \mathcal{H}$ with real amplitudes.

Length:
$$\langle \psi_A | \psi_A \rangle = \langle \psi_B | \psi_B \rangle = 1$$

Angle: $\cos \theta = \langle \psi_A | \psi_B \rangle$
Qubits are the same if $\theta = 0$

Can we tell if $\theta = 0$ by measuring the qubits?

Measurement in the standard basis:

$$p_A = |\langle 0|\psi_A\rangle|^2 = |\alpha_0|^2, \qquad p_B = |\langle 0|\psi_B\rangle|^2 = |\beta_0|^2$$

- Measurement Strategy:Receive multiple copies of the two qubits.
- Repeat the measurement experiment.
- If $p_A \neq p_B$ then **Different!**

Repeat many times

• • •

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:

•
$$|\psi_A\rangle = |1\rangle$$

$$p = 3$$

$$p = ?$$

•
$$|\psi_B\rangle = |+\rangle$$

$$\begin{cases} 0 & p = 3 \\ p = 3 \end{cases}$$

Different!

Repeat many times

• • •

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:

•
$$|\psi_A\rangle=|1\rangle$$

$$p = 0$$

$$p = 1$$

•
$$|\psi_B\rangle = |+\rangle$$

$$\begin{cases} 0 & p = 0.5 \\ p = 0.5 \end{cases}$$

Different!

Repeat many times

• • •

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:

•
$$|\psi_A\rangle=|1\rangle$$

$$p = 0$$

$$p = 1$$

•
$$|\psi_B\rangle = |+\rangle$$

$$\begin{cases} 0 & p = 0.5 \\ p = 0.5 \end{cases}$$

Different!

Repeat many times

. . .

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #1:

•
$$|\psi_A\rangle = |1\rangle$$

$$p = 0$$

$$p = 1$$

•
$$|\psi_B\rangle = |+\rangle$$

$$\begin{cases} 0 & p = 0.5 \\ 1 & p = 0.5 \end{cases}$$

Different!

One-sided error strategy to tell the difference:

- If measured red(1), I know it's $|\psi_B\rangle$.
- If measured blue(0), I guess it's $|\psi_A\rangle$.

Repeat many times

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Yale

- Example #2: $|\psi_A\rangle=|+\rangle$

•
$$|\psi_B\rangle = |-\rangle = 0$$

$$p = ?$$

$$p = ?$$

Repeat many times

...

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #2:

- p = 0.5
- $|\psi_A\rangle=|+\rangle$
- p = 0.5
- $|\psi_B
 angle = |angle \left\{ egin{array}{ll} & p = 0.5 \\ & p = 0.5 \end{array}
 ight.$ Same?

Repeat many times

...

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #2:
•
$$|\psi_A\rangle=|+\rangle$$
 $\left\{\begin{array}{ccc} \mathbf{0} & p=0.5 \\ \mathbf{1} & p=0.5 \end{array}\right.$ • $|\psi_A\rangle=|+\rangle$

$$p=0.$$

$$p = 0.5$$

•
$$|\psi_A
angle=|+$$

$$p =$$

$$p = ?$$

•
$$|\psi_B
angle$$

$$p = 0.5$$

•
$$|\psi_B\rangle = |-\rangle$$

$$p = ?$$

$$p=0.1$$

$$p = ?$$

Repeat many times

• • •

We can tell if two qubits are different by collecting measurement statistics of each qubit.

xample #2:
$$|\psi_{\scriptscriptstyle A}\rangle = |+\rangle$$

$$p = 0.5$$

$$p = 0.5$$

•
$$|\psi_A\rangle=|+\rangle$$

$$p$$
 :

$$p-1$$

$$p = 0$$

$$|\psi_B\rangle = |-\rangle \int 0$$

$$p = 0.5$$

$$|\psi_B
angle=|-
angle$$

Improved Measurement Strategy

Change of basis:

•
$$|\psi_A\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \alpha'_0|v_0\rangle + \alpha'_1|v_1\rangle$$

•
$$|\psi_B\rangle = \beta_0|0\rangle + \beta_1|1\rangle = {\beta'}_0|v_0\rangle + {\beta'}_1|v_1\rangle$$

Improved Measurement Strategy:

- Receive multiple copies of the two qubits.
- Choose a measurement basis.
- Repeat the measurement experiment.
- If $p_A \neq p_B$ then **Different!**

Measurement in the basis $\{|v_0\rangle, |v_1\rangle\}$:

$$p_A = |\langle v_0 | \psi_A \rangle|^2$$
, $p_B = |\langle v_1 | \psi_B \rangle|^2$
 $p_A = |\alpha'_0|^2$, $p_B = |\beta'_0|^2$

For example , we choose basis $\{|\psi_A
angle,|\psi_A^\perp
angle\}$:

One-sided error:
$$\begin{cases} \text{For } |\psi_A\rangle, \Pr[|\psi_A^{\perp}\rangle] = 0 \\ \text{For } |\psi_B\rangle, \Pr[|\psi_A^{\perp}\rangle] = \sin^2 \theta \end{cases}$$

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #3:
$$|\psi_A\rangle=|0\rangle$$

$$p=3$$

$$p = ?$$

$$p = 3$$

$$\rho_B \gamma = -|0\rangle$$

$$p = ?$$

We can tell if two qubits are different by collecting measurement statistics of each qubit.

•
$$|\psi_A\rangle = |0\rangle$$

$$p = 1$$

$$p = 0$$

•
$$|\psi_B\rangle = -|0\rangle$$
 $\begin{cases} \mathbf{0} & p=1 \\ \mathbf{1} & p=0 \end{cases}$ Same?

We can tell if two qubits are different by collecting measurement statistics of each qubit.

le #3:
$$\int \mathbf{0} p$$

$$p = 1$$

$$|\psi_A\rangle = |0\rangle$$

Example #3:
$$|\psi_A\rangle = |0\rangle \quad \begin{cases} 0 & p=1 \\ 1 & p=0 \end{cases} \quad \cdot \quad |\psi_A\rangle = |0\rangle \quad \begin{cases} \psi_A = |0\rangle \\ 0 & p=1 \end{cases}$$

•
$$|\psi_B\rangle = -|0\rangle$$
 $\begin{cases} 0 & p=1 \\ 1 & p=0 \end{cases}$ • $|\psi_B\rangle = -|0\rangle$ $\begin{cases} 0 & p=3 \\ 0 & p=3 \end{cases}$

Same?

We can tell if two qubits are different by collecting measurement statistics of each qubit.

Example #3:
•
$$|\psi_A\rangle = |0\rangle$$
 $\begin{cases} 0 & p = 1 \\ 1 & p = 0 \end{cases}$ • $|\psi_A\rangle = |0\rangle$ $\begin{cases} 0 & p = 0.5 \\ p = 0.5 \end{cases}$
• $|\psi_B\rangle = -|0\rangle$ $\begin{cases} 0 & p = 1 \\ p = 0 \end{cases}$ • $|\psi_B\rangle = -|0\rangle$ $\begin{cases} 0 & p = 0.5 \\ p = 0.5 \end{cases}$
• $|\psi_B\rangle = -|0\rangle$ $\begin{cases} 0 & p = 1 \\ p = 0.5 \end{cases}$

Angle:
$$\cos\theta = \langle \psi_A | \psi_B \rangle = -1$$

$$\theta = \pi$$

Global Phase

Two states differing by a global factor:

$$|\psi_A\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$
 and $|\psi_B\rangle = -(\alpha_0|0\rangle + \alpha_1|1\rangle)$

No matter how we choose our measurement basis $\{|v_0\rangle, |v_1\rangle\}$:

$$p_A = |\langle v_0 | (\alpha'_0 | v_0 \rangle + \alpha'_1 | v_1 \rangle)|^2 = |\alpha'_0|^2, \qquad p_B = |\langle v_0 | - (\alpha'_0 | v_0 \rangle + \alpha'_1 | v_1 \rangle)|^2 = |-\alpha'_0|^2$$

In fact, for any "global phase":

- $\alpha |0\rangle + \beta |1\rangle \equiv e^{i\phi}(\alpha |0\rangle + \beta |1\rangle)$ for $\phi \in \mathbb{R}$
- No experiment can distinguish $|\psi\rangle$ from $e^{i\phi}|\psi\rangle$. They are **identical** quantum states.

$$p_{A} = |\langle v_{0} | (\alpha'_{0} | v_{0} \rangle + \alpha'_{1} | v_{1} \rangle)|^{2} = |\alpha'_{0}|^{2}, \qquad p_{B} = \left| \langle v_{0} | e^{i\phi} (\alpha'_{0} | v_{0} \rangle + \alpha'_{1} | v_{1} \rangle) \right|^{2} = \left| e^{i\phi} \alpha'_{0} \right|^{2}$$

Note: relative phase still matters!

• $\alpha |0\rangle + e^{i\phi}\beta |1\rangle$ for some $\phi \in \mathbb{R}$

A Qubit – The Bloch Sphere

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^2$$

- Normalized: $|\alpha|^2 + |\beta|^2 = 1$
- Global phase does not matter: $|\psi\rangle$ and $e^{i\phi}|\psi\rangle$ not distinguishable

<u>Derive on board</u> (in terms of two real numbers?):

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix}$$
$$= \begin{bmatrix} a \\ e^{i\phi}\sqrt{1 - a^2} \end{bmatrix} \qquad 0 \le a \le 1, 0 \le \phi < 2\pi$$

We can visualize two real numbers!

A Qubit – The Bloch Sphere

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^2$$

- Normalized: $|\alpha|^2 + |\beta|^2 = 1$
- Global phase does not matter: $|\psi\rangle \ {\rm and} \ e^{i\phi}|\psi\rangle \ {\rm not} \ {\rm distinguishable}$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} a \\ e^{i\phi} \sqrt{1 - a^2} \end{bmatrix}$$

$$(0 \le a \le 1, 0 \le \phi < 2\pi)$$

$$= \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\phi} \sin\frac{\theta}{2} \end{bmatrix} \quad (0 \le \theta \le \pi, 0 \le \phi < 2\pi)$$

We can visualize two real numbers:

- $a^2 \in [0,1]$: Probability of measuring $|0\rangle$
 - $z = 2\left(a^2 \frac{1}{2}\right) \in [-1,1]$
- $e^{i\phi}$: relative phase, $0 \le \phi < 2\pi$

Where are $|0\rangle$ and $|1\rangle$ on Bloch sphere?

45

A Qubit – The Bloch Sphere

$$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle\in\mathbb{C}^2$$

$$= \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{bmatrix}$$

$$(0 \le \theta \le \pi, 0 \le \phi < 2\pi)$$

Spherical Coordinate: (θ, ϕ)

What about its **Cartesian coordinate**: (x, y, z)?

$$(x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

Density operator:
$$|\psi\rangle\langle\psi| = \frac{1}{2}(\sigma_I + x \cdot \sigma_X + y \cdot \sigma_Y + z \cdot \sigma_Z)$$