

Quantum Gates

PART A

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

Mathematical Model of Quantum Computing

Four Principles to model quantum systems mathematically:

1. Superposition:

The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space.

2. Composition:

The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:

Time evolution of a quantum system is a unitary process.

4. Measurement:

Readout information from a quantum state causes the superposition state to collapse/project to one of its basis states randomly.

Niels Bohr: "Anyone who is not shocked by quantum theory has not understood it."

A Qubit – The Bloch Sphere

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^2$$

- Normalized: $|\alpha|^2 + |\beta|^2 = 1$
- Global phase does not matter: $|\psi\rangle$ and $e^{i\phi}|\psi\rangle$ not distinguishable

<u>Derive on board</u> (in terms of two real numbers):

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ e^{i\phi}\sqrt{1 - a^2} \end{bmatrix} \ 0 \le \alpha \le 1, 0 \le \phi < 2\pi$$

We can visualize two real numbers!

A Qubit – The Bloch Sphere

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^2$$

- Normalized: $|\alpha|^2 + |\beta|^2 = 1$
- Global phase does not matter: $|\psi\rangle$ and $e^{i\phi}|\psi\rangle$ not distinguishable

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ e^{i\phi} \sqrt{1 - a^2} \end{bmatrix}$$

$$(0 \le a \le 1, 0 \le \phi < 2\pi)$$

$$= \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{bmatrix} \quad (0 \le \theta \le \pi, 0 \le \phi < 2\pi)$$

We can visualize two real numbers:

• $a^2 \in [0,1]$: Probability of measuring $|0\rangle$

•
$$z=2\left(a^2-\frac{1}{2}\right)\in[-1,1]=2\left(\cos^2\frac{\theta}{2}-\frac{1}{2}\right)=\cos\theta$$

• $e^{i\phi}$: relative phase, $0\leq\phi<2\pi$

Spherical Coordinate: (θ, ϕ)

A Qubit – The Bloch Sphere

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^{2}$$

$$= \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{bmatrix}$$

$$(0 \le \theta \le \pi, 0 \le \phi < 2\pi)$$

Spherical Coordinate: (θ, ϕ)

What about its **Cartesian coordinate**: (x, y, z)?

$$(x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

Where are $|0\rangle$, $|1\rangle$, $|+\rangle$, $|-\rangle$ on Bloch sphere?

Density operator:
$$|\psi\rangle\langle\psi| = \frac{1}{2}(\sigma_I + x \cdot \sigma_X + y \cdot \sigma_Y + z \cdot \sigma_Z)$$

Single-Qubit Pauli Gates

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \in \mathbb{C}^2$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \sim \begin{bmatrix} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \end{bmatrix}$$
: two real numbers

A point on the surface of the **Bloch sphere**:

Pauli gates:

•
$$\sigma_I = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{I} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

•
$$\sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{X} \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$

•
$$\sigma_Y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{Y} \begin{bmatrix} -i\beta \\ \alpha \end{bmatrix}$

•
$$\sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Transformations:

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{I} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{X} \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{Y} \begin{bmatrix} -i\beta \end{bmatrix}$$

•
$$\sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{Z} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$

$$\alpha_1$$
 I α_1

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{I} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$|+\rangle$$
 and $|-\rangle$

Eigenstates:

 $U|\psi\rangle = \lambda |\psi\rangle$

 $|0\rangle$ and $|1\rangle$ (zaxis)

6

Geometric Interpretations of Pauli Gates

Pauli Gate:

$$\sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma_Y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$\sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Transformation:

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{X} \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{Y} \begin{bmatrix} -i\beta \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{Z} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$$

Change in (θ, ϕ) ? (Derive on board)

$$(\theta,\phi) \xrightarrow{X} (\pi-\theta,-\phi)$$

Rotation about x-axis by 180°

Rotation about y-axis by 180°

Rotation about z-axis by 180°

Closer look: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors in QM

Symmetric matrix (real):

$$S^T = S$$

Hermitian matrix (complex):

$$H^{\dagger} = H$$

- Hermitian matrix has real eigenvalues. •
- Corresponding to physical observable with real-valued quantity.

Why?

Eigenvalue equation for a linear operator A:

$$A|v_i\rangle = \lambda_i|v_i\rangle$$

where $|v_i\rangle$ is the (non-zero) **eigenvector**, and λ_i is a complex number known as the **eigenvalue**. <u>Derive on board</u> (Pauli Matrices):

"Pauli Z operator"
$$\sigma_Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 Standard basis! $\{|0\rangle, |1\rangle\}$

- Eigenvalues: $\lambda_0=1$ and $\lambda_1=-1$ Eigenvectors: $|v_0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$ and $|v_1\rangle=\begin{bmatrix}0\\1\end{bmatrix}$

"Pauli Y operator"
$$\sigma_Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 $\{|+i\rangle, |-i\rangle\}$ basis!

- Eigenvalues: $\lambda_0 = 1$ and $\lambda_1 = -1$
- Eigenvectors: $|v_0\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\i \end{bmatrix}$ and $|v_1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-i \end{bmatrix}$

"Pauli X operator"
$$\sigma_{\chi} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\{|+\rangle, |-\rangle\}$$
 basis!

- Eigenvalues: $\lambda_0 = 1$ and $\lambda_1 = -1$
- Eigenvectors: $|v_0\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}$ and $|v_1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}$

Spectral Theorem

For a linear operator that is normal ($A^{\dagger}A = AA^{\dagger}$), we can write it in the **spectral decomposition**:

$$A = \sum_{i} \lambda_{j} |v_{j}\rangle\langle v_{j}|$$

where λ_i are the eigenvalues, and $|v_i\rangle$ are the corresponding (orthonormal) eigenvectors.

Examples:

$$\sigma_Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = (+1)|0\rangle\langle 0| + (-1)|1\rangle\langle 1|$$

$$\sigma_{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = (+1)|0\rangle\langle 0| + (-1)|1\rangle\langle 1| \qquad \sigma_{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = (+1)|+\rangle\langle +|+(-1)|-\rangle\langle -|$$

Applications:

Power of a matrix:

$$A^{8} = \left(\sum_{j} \lambda_{j} |v_{j}\rangle\langle v_{j}|\right)^{8} = \sum_{j} \lambda_{j}^{8} |v_{j}\rangle\langle v_{j}|$$

Exponential of a matrix:

$$e^A \equiv \sum_{k=0}^{\infty} \frac{1}{k!} A^k = \sum_j e^{\lambda_j} |v_j\rangle\langle v_j|$$

Example:

$$e^{i\theta\sigma_z} = e^{i\theta}|0\rangle\langle 0| + e^{-i\theta}|1\rangle\langle 1| = \begin{bmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{bmatrix}$$

 $=\cos\theta \,\sigma_I - i\sin\theta \,\sigma_Z$ (by Euler's formula)

Pauli Rotation Gates

Pauli-Z gate:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

What about $R_Z\left(\frac{\pi}{2}\right)$?

$$_{_{y}} R_{Z}\left(\frac{\pi}{2}\right) = \sqrt{Z} = S = \begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix}$$

Pauli-X gate:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

What about $R_X\left(\frac{\pi}{2}\right)$?

Spectral theorem!

$$R_X\left(\frac{\pi}{2}\right) = \sqrt{X} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$$

$$=\frac{1}{\sqrt{2}}\begin{bmatrix}1 & -i\\ -i & 1\end{bmatrix}e^{\frac{i\pi}{4}}$$

Global phase.

$$R_{X}(\theta) = e^{-\frac{i\theta}{2}X} = \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)X$$

$$R_{Y}(\theta) = e^{-\frac{i\theta}{2}Y} = \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)Y$$

$$R_{Z}(\theta) = e^{-\frac{i\theta}{2}Z} = \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)Z$$

(Using spectral theorem and Euler's formula)

10

Principle #3 – Transformation

Unitary Transformation: The evolution of a quantum state can be described as a *norm-preserving linear transformation* (a.k.a. unitary matrix).

Norm-preserving:

$$\||\psi_i\rangle\|^2 = \||\psi_f\rangle\|^2 = 1$$

• Linear transformation:

Linear operator: $|\psi_f\rangle = U|\psi_i\rangle$, for some matrix U.

"Preserves inner product."

Why unitary? $U^{\dagger}U = I$

- The process is **reversible** and **deterministic**: $U^{-1} = U^{\dagger}$
- In physics: "Coherent process"

What about Hadamard Gate?

Hadamard gate: $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

•
$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = |+\rangle$$

•
$$H|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle = |-\rangle$$

•
$$H|+\rangle = |0\rangle$$

•
$$H|-\rangle = |1\rangle$$

Compared to **y-axis rotation**: $R_Y\left(\frac{\pi}{2}\right)$

•
$$R_Y\left(\frac{\pi}{2}\right)|0\rangle = |+\rangle$$

•
$$R_Y\left(\frac{\pi}{2}\right)|1\rangle = |-\rangle$$

•
$$R_Y\left(\frac{\pi}{2}\right)|+\rangle = |1\rangle$$

•
$$R_Y\left(\frac{\pi}{2}\right)|-\rangle = |0\rangle$$

Understanding Hadamard

Hadamard gate: $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Take another input state:

$$|h\rangle = \cos\left(\frac{\pi}{8}\right)|0\rangle + \sin\left(\frac{\pi}{8}\right)|1\rangle$$

Check: $H|h\rangle = ?$

Reflection about the plane at 45 between x and z axes.

Why is it a **reflection** about $|h\rangle$?

<u>Derive on board:</u> What is the reflected state?

We have
$$|p\rangle=\Pi_h|\psi\rangle$$
, $\Pi_h=|h\rangle\langle h|$

$$|\psi'\rangle = (I - 2\Pi_h)|\psi\rangle$$

Indeed,
$$(I - 2\Pi_h) = H!$$

Reflections

More generally, given a projector $\Pi=|x\rangle\langle x|$, the projected state $|p\rangle=\Pi|\psi\rangle=p|x\rangle$

We can define a **reflection operator**:

$$R = I - 2\Pi$$

<u>Derive on board</u>:

- $R^2 = ?$
- For a vector $|v\rangle$ in the projected "plane" ($\Pi|v\rangle = |v\rangle$): what is $R|v\rangle$?
- For a vector $|v^{\perp}\rangle$ orthogonal to the projected "plane" ($\Pi|v^{\perp}\rangle=0$): what is $R|v^{\perp}\rangle$?

