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Mathematical Model of Quantum Computing
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Four Principles to model quantum systems mathematically:

1. Superposition:
The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space. 

2. Composition:
The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:
Time evolution of a quantum system is a unitary process.

4. Measurement:
Readout information from a quantum state causes the superposition state to collapse/project to one of 
its basis states randomly.

Niels Bohr: “Anyone who is not shocked by quantum theory has not understood it.” 



A Qubit – The Bloch Sphere
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𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ2

• Normalized: 𝛼 2 + 𝛽 2 = 1
• Global phase does not matter:

𝜓  and 𝑒𝑖𝜙 𝜓  not distinguishable 

Derive on board (in terms of two real numbers):

0 ≤ 𝑎 ≤ 1, 0 ≤ 𝜙 < 2𝜋
𝛼
𝛽 =

𝑎

𝑒𝑖𝜙 1 − 𝑎2

We can visualize two real numbers!



A Qubit – The Bloch Sphere
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𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ2

• Normalized: 𝛼 2 + 𝛽 2 = 1
• Global phase does not matter:

𝜓  and 𝑒𝑖𝜙 𝜓  not distinguishable 

𝛼
𝛽 =

𝑎

𝑒𝑖𝜙 1 − 𝑎2

(0 ≤ 𝑎 ≤ 1, 0 ≤ 𝜙 < 2𝜋)

• 𝑎2 ∈ [0,1]: Probability of measuring |0⟩

• 𝑧 = 2 𝑎2 −
1

2
∈ [−1,1]

• 𝑒𝑖𝜙: relative phase, 0 ≤ 𝜙 < 2𝜋

We can visualize two real numbers:

𝑧
𝜙

0

1

+1

-1

𝑥

𝑦

y

𝜙

𝜃

=
cos

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2

(0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋)
Spherical Coordinate: (𝜃, 𝜙)

= 2 cos2
𝜃

2
 −

1

2
= cos 𝜃



A Qubit – The Bloch Sphere
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𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ2

=
cos

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2

(0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋)

Spherical Coordinate: (𝜃, 𝜙)

What about its Cartesian coordinate: (𝑥, 𝑦, 𝑧)? 𝑥, 𝑦, 𝑧 = (sin 𝜃 cos 𝜙 , sin 𝜃 sin 𝜙 , cos 𝜃)

y

𝜙

𝜃

𝑧 = cos 𝜃
1

sin 𝜃

𝜙

𝑥 = sin 𝜃 cos 𝜙

𝑦 = sin 𝜃 sin 𝜙

Density operator: 𝜓 𝜓 =
1

2
𝜎𝐼 + 𝑥 ⋅ 𝜎𝑋 + 𝑦 ⋅ 𝜎𝑌 + 𝑧 ⋅ 𝜎𝑍

Where are 0 , 1 , + , −  on Bloch sphere? 



Single-Qubit Pauli Gates
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𝛼
𝛽 ~

cos
𝜃

2

𝑒𝑖𝜙 sin
𝜃

2

: two real numbers

𝜓 = 𝛼 0 + 𝛽 1 ∈ ℂ2

y

|0⟩

|1⟩

𝜙
𝜃

Pauli gates: 

• 𝜎𝐼 = 𝐼 =
1 0
0 1

• 𝜎𝑋 = 𝑋 =
0 1
1 0

  

• 𝜎𝑌 = 𝑌 =
0 −𝑖
𝑖 0

 

• 𝜎𝑍 = 𝑍 =
1 0
0 −1

0  and 1  

+𝑖  and −𝑖  

+  and −  

Eigenstates:
𝑈 𝜓 = 𝜆|𝜓⟩

A point on the surface of the Bloch sphere:

Transformations:

𝛼
𝛽

 I 𝛼
𝛽

𝛼
𝛽

 𝑋 𝛽
𝛼

𝛼
𝛽

 𝑌 −𝑖𝛽
𝛼

𝛼
𝛽

 𝑍 𝛼
−𝛽

(x axis)

(y axis)

(z axis)



Geometric Interpretations of Pauli Gates
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Transformation:
𝛼
𝛽

 𝑋 𝛽
𝛼

𝛼
𝛽

 𝑌 −𝑖𝛽
𝛼

𝛼
𝛽

 𝑍 𝛼
−𝛽

𝜎𝑋 = 𝑋 =
0 1
1 0

  𝜎𝑌 = 𝑌 =
0 −𝑖
𝑖 0

𝜎𝑍 = 𝑍 =
1 0
0 −1

Pauli Gate:

Change in 𝜃, 𝜙 ?
(Derive on board)

(𝜃, 𝜙)
 𝑋 

(𝜋 − 𝜃, −𝜙) (𝜃, 𝜙)
 𝑍 

(𝜃, 𝜋 + 𝜙)

𝑅𝑍(𝜋)𝑅𝑌(𝜋)

Rotation about z-axis by 180°Rotation about y-axis by 180°Rotation about x-axis by 180°

𝑅𝑋(𝜋)

𝛼
𝛽 ~

cos
𝜃

2

𝑒𝑖𝜙 sin
𝜃

2

Closer look: Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors in QM

• Hermitian matrix has real eigenvalues.
• Corresponding to physical observable 

with real-valued quantity.

Eigenvalue equation for a linear operator 𝐴:

𝐴 𝑣𝑗 = 𝜆𝑗 𝑣𝑗

where 𝑣𝑗  is the (non-zero) eigenvector,

and 𝜆𝑗 is a complex number known as the eigenvalue.

Hermitian matrix (complex): 
𝐻† = 𝐻

Derive on board (Pauli Matrices): 

“Pauli Z operator” 𝜎𝑍 =
1 0
0 −1

• Eigenvalues: 𝜆0 = 1 and 𝜆1 = −1

• Eigenvectors: 𝑣0 =
1
0

 and 𝑣1 =
0
1

“Pauli Y operator” 𝜎𝑌 =
0 −𝑖
𝑖 0

• Eigenvalues: 𝜆0 = 1 and 𝜆1 = −1

• Eigenvectors: 𝑣0 =
1

2

1
𝑖

 and 𝑣1 =
1

2

1
−𝑖

“Pauli X operator” 𝜎𝑥 =
0 1
1 0

• Eigenvalues: 𝜆0 = 1 and 𝜆1 = −1

• Eigenvectors: 𝑣0 =
1

2

1
1

 and 𝑣1 =
1

2

1
−1

Standard basis!
0 , 1

+ , −  basis!

Symmetric matrix (real):
𝑆𝑇 = 𝑆

Why?
+𝑖 , −𝑖  basis!



Spectral Theorem

For a linear operator that is normal (𝐴†𝐴 = 𝐴𝐴†), we can write it in the spectral decomposition:

𝐴 = ෍

𝑗

𝜆𝑗 𝑣𝑗 𝑣𝑗

where 𝜆𝑗 are the eigenvalues, and 𝑣𝑗  are the corresponding (orthonormal) eigenvectors.

Applications:

• Power of a matrix:

𝐴8 = ෍

𝑗

𝜆𝑗 𝑣𝑗 𝑣𝑗

8

= ෍

𝑗

𝜆𝑗
8 𝑣𝑗 𝑣𝑗

• Exponential of a matrix:

𝑒𝐴 ≡ ෍

𝑘=0

∞
1

𝑘!
𝐴𝑘 = ෍

𝑗

𝑒𝜆𝑗 𝑣𝑗 𝑣𝑗

Example:

𝑒𝑖𝜃𝜎𝑧 = 𝑒𝑖𝜃 0 0 + 𝑒−𝑖𝜃 1 1 = 𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃

𝜎𝑍 =
1 0
0 −1

= +1 0 0 + −1 1 1 𝜎𝑋 =
0 1
1 0

= +1 + + + −1 − −

Examples:

= cos 𝜃 𝜎𝐼 − 𝑖 sin 𝜃 𝜎𝑍 (by Euler’s formula)



Pauli Rotation Gates
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Rotation gates: 𝑅𝑌 𝜃 = 𝑒−
𝑖𝜃
2 𝑌 = cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑌

𝑅𝑍 𝜃 = 𝑒−
𝑖𝜃
2 𝑍 = cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑍

What about 𝑅𝑍
𝜋

2
?

𝑍 =
1 0
0 −1

𝑅𝑍(𝜋)

Pauli-Z gate:

𝑅𝑍

𝜋

2
= 𝑍 = 𝑆 =

1 0
0 𝑖

What about 𝑅𝑋
𝜋

2
?

𝑋 =
0 1
1 0

𝑅𝑋(𝜋)

Pauli-X gate:

𝑅𝑋

𝜋

2
= 𝑋 =

1

2
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

𝑅𝑋 𝜃 = 𝑒−
𝑖𝜃
2 𝑋 = cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑋

Spectral theorem!

=
1

2

1 −𝑖
−𝑖 1

𝑒
𝑖𝜋
4

Global phase.

(Using spectral theorem and Euler’s formula)



Principle #3 – Transformation
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𝜓𝑖 𝜓𝑓

Initial Final

Valid state Valid state

Evolve

Unitary Transformation: The evolution of a quantum 
state can be described as a norm-preserving linear 
transformation (a.k.a. unitary matrix).

• Norm-preserving:

𝜓𝑖
2 = 𝜓𝑓

2
= 1

• Linear transformation:

Linear operator: 𝜓𝑓 = 𝑈 𝜓𝑖 , for some matrix 𝑈.

Why unitary? 𝑈†𝑈 = 𝐼

“Preserves inner product.”
𝑈

Invert

𝑈−1 • The process is reversible and deterministic: 𝑈−1 = 𝑈†

• In physics: “Coherent process”



What about Hadamard Gate?

Hadamard gate: 𝐻 =
1

2

1 1
1 −1

• 𝐻 0 =
1

2
0 +

1

2
1 = |+⟩

• 𝐻 1 =
1

2
0 −

1

2
1 = |−⟩

y

|0⟩

|1⟩

y

|0⟩

|1⟩

“Swaps x and z axes!”

Compared to y-axis rotation: 𝑅𝑌
𝜋

2

• 𝐻 + = |0⟩
• 𝐻 − = |1⟩

• 𝑅𝑌
𝜋

2
0 = +

• 𝑅𝑌
𝜋

2
1 = −

• 𝑅𝑌
𝜋

2
+ = |1⟩

• 𝑅𝑌
𝜋

2
− = |0⟩

0

1

+

−

0

1

+

−

𝑅𝑌(𝜋)



Understanding Hadamard

Hadamard gate: 𝐻 =
1

2

1 1
1 −1

Take another input state: 

ℎ = cos
𝜋

8
0 + sin

𝜋

8
1

Check:  𝐻 ℎ = ?

y

|0⟩

|1⟩

Reflection about the plane at 45 between x and z axes.

ℎ

Why is it a reflection about ℎ ? 

|𝜓⟩

|ℎ⟩
|𝑝⟩

𝜓′ = 𝐻 𝜓 ?

Derive on board: What is the reflected state?
We have 𝑝 = Πℎ 𝜓 , Πℎ = |ℎ⟩⟨ℎ|

𝜓′ = 𝐼 − 2Πℎ 𝜓

Indeed, 𝐼 − 2Πℎ = 𝐻!



Reflections

More generally, given a projector Π = |x⟩⟨𝑥|, the projected state 𝑝 = Π 𝜓 = 𝑝 𝑥 |𝜓⟩

|𝑥⟩
|𝑝⟩

𝜓′ = 𝑅|𝜓⟩

We can define a reflection operator: 
𝑅 = 𝐼 − 2Π

Derive on board:
• 𝑅2 = ?
• For a vector |𝑣⟩ in the projected “plane” (Π v = 𝑣 ): what is 𝑅|𝑣⟩? 
• For a vector |𝑣⊥⟩ orthogonal to the projected “plane” (Π|𝑣⊥⟩ = 0): what is 𝑅 𝑣⊥ ? 
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