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Principle #3 – Transformation

2

𝜓𝑖 𝜓𝑓

Initial Final

Valid state Valid state

Evolve

Unitary Transformation: The evolution of a quantum 
state can be described as a norm-preserving linear 
transformation (a.k.a. unitary matrix).

• Norm-preserving:

𝜓𝑖
2 = 𝜓𝑓

2
= 1

• Linear transformation:

Linear operator: 𝜓𝑓 = 𝑈 𝜓𝑖 , for some matrix 𝑈.

Unitary: 𝑈†𝑈 = 𝐼

“Preserves inner product.”
𝑈

Invert

𝑈−1 • The process is reversible and deterministic: 𝑈−1 = 𝑈†

• In physics: “Coherent process”



Two-Qubit Gates
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CNOT gate:

CZ gate:



Multi-Qubit Gates

We can construct: controlled-U Gate (“quantum if-else”) as a (𝑛 + 1) qubit gate:

New unitary of size 2𝑛+1-by- 2𝑛+1:

C-U =  
𝐼2𝑛 0
0 𝑈

.

U

Beyond two-qubit gates? Given any 𝑛-qubit unitary matrix 𝑈 (of size 2𝑛-by- 2𝑛)

• 𝐼2𝑛 : 2𝑛-by- 2𝑛 Identity matrix
• 0: all-zero matrix

Different from 𝐼 ⊗ 𝑈:

• C-U = 0 0 ⊗ 𝐼 + 1 1 ⊗ 𝑈

• 𝐼 ⊗ 𝑈 = 0 0 ⊗ 𝑈 + 1 1 ⊗ 𝑈

C-U =

1
⋱

1
𝑢0,0 … 𝑢0,2𝑛−1

⋮ ⋱ ⋮
𝑢2𝑛−1,0 … 𝑢2𝑛−1,2𝑛−1

𝐼 ⊗ 𝑈 =

𝑢0,0 … 𝑢0,2𝑛−1

⋮ ⋱ ⋮
𝑢2𝑛−1,0 … 𝑢2𝑛−1,2𝑛−1

𝑢0,0 … 𝑢0,2𝑛−1

⋮ ⋱ ⋮
𝑢2𝑛−1,0 … 𝑢2𝑛−1,2𝑛−1

…



Unitary Transformations

Circuit #1: 

𝐻

Circuit #2: 

𝑋𝑍 𝐻|𝜓⟩ |𝜓⟩? ?

They look different, but implement the same unitary:
𝐻𝑋𝐻 = 𝑍, 𝐻𝑍𝐻 = 𝑋

𝐻

𝐻

𝐻

𝐻

?
=

Circuit #3: Circuit #4: 

Flipping who’s control and who’s target.

|𝜓𝑖⟩

𝜓𝑓 = 𝑈|𝜓𝑖⟩

𝑈

Transforming from |𝝍𝒊⟩ to |𝝍𝒇⟩ in 

the Hilbert Space

Circuit 1

Circuit 2

Circuit 3

Compiler optimization: 
Finding shorter/easier circuits to implement 𝑈. 



Copying Qubits?

Classical information can be copied:

𝑏

𝑏

𝑏

Classical fanout gate that “duplicates” input 𝑏 ∈ {0,1}

Can we do the same for quantum information?

COPY
𝜓 𝜓

𝜓0

No-cloning theorem: There’s no unitary matrix that can transform arbitrary 
(unknown) quantum state 𝜓 ⊗ |0⟩ to 𝜓 ⊗ 𝜓 .



Cloning is not possible

COPY
𝜓 𝜓

𝜓0

No-cloning theorem: There’s no unitary matrix that can transform arbitrary 
(unknown) quantum state 𝜓 ⊗ |0⟩ to 𝜓 ⊗ 𝜓 .

For any 𝛼, 𝛽: 𝛼 0 + 𝛽|1⟩) ⊗ |0⟩
 

𝛼 0 + 𝛽|1⟩) ⊗ 𝛼 0 + 𝛽|1⟩)
Not linear! 

Remarks:
• No unitary works universally for all 𝜓
• But we can find unitary that works for some 𝜓 . 

0 ⊗ |0⟩
 U 

0 ⊗ |0⟩ + ⊗ |0⟩
 U 

+ ⊗ |+⟩

AFSOC, there is a universal cloner 𝑈 that works for:

and

Since U is unitary, it must preserve inner product.

But 0 ⊗ 0 + ⊗ |0⟩ ≠ 0 ⊗ 0 + ⊗ |+⟩ . Contradiction!



Restricted Cloning

?
+ +

+0

Example #1 (copying +  state):

+ +

+0 H

𝜇0

𝜇𝑛−1

Example #2 (copying Fourier states):

Any state with a known preparation circuit.

𝜇𝑘 =
1

2
0 + 𝑒2𝜋𝑖𝑥/2𝑛−𝑘

1 , for some 𝑥 ∈ 0,1 𝑛

0

0

𝜇0

𝜇𝑛−1

𝜇0

𝜇𝑛−1
?

…
…

…
…

𝜇0

𝜇1

0

0

𝜇0

𝜇1

𝜇0

𝜇1

H

H

E.g., for 𝑛 = 2

Any subset of states with the same 
known preparation circuit.

Works for any 𝑥 ∈ 0,1 2



Quantum Fanout Gate

𝛼|0⟩ + 𝛽|1⟩

0 0

𝛼|0⟩ + 𝛽|1⟩

𝛼|0⟩ + 𝛽|1⟩

𝛼|0⟩ + 𝛽|1⟩
𝛼|00⟩ + 𝛽|11⟩

“Copy along each basis”

Separate copies not possible: Entangled copies are possible:

More (entangled) copies are also possible:

0

𝛼|0⟩ + 𝛽|1⟩

𝛼|00000000⟩ + 𝛽|11111111⟩

0

0

0

0

0

0

|𝜓⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

What does this operation look like 
in terms of CX gates?

Can we do better (in “circuit depth”)?

𝑏

𝑎

𝑎 ⊕ 𝑏

𝑎

Along each basis (𝑎, 𝑏 ∈ {0,1}): 



Quantum Fanout Gate

Quantum fanout: Not only possible, but efficient in circuit depth.

More about this in Lecture 7 (Teleportation).

Circuit Depth: 𝑂(log 𝑛) Circuit Depth: 𝑂(1) 

Constant quantum depth
Logarithmic classical depth
1D nearest-neighbor

Linear-depth, 
1D nearest-neighbor

Logarithmic-depth, 
non-nearest-neighbor

|𝜓⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|𝜓⟩

|0⟩

|0⟩

|0⟩

H

H

(
(

(

H

𝑚1

𝑚2

𝑚3

𝑠1 = 𝑚1 
𝑠2 = 𝑚1 ⊕ 𝑚2 
𝑠3 = 𝑚1 ⊕ 𝑚2 ⊕ 𝑚3 

|0⟩

|0⟩

|0⟩

X𝑠1

X𝑠2

X𝑠3

|𝜓⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

Prefix parity

Circuit Depth: 𝑂(𝑛) 

|𝜓⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

= = =



Computing Parity Function

Quantum constant-depth circuit (with 1-q, 2-q, Fanout 
gates) can compute a large set of Boolean functions.

More examples: 
• Majority function [Høyer, Špalek, 05]
• And function [Takahashi, Tani, 16]

Quantum fanout is powerful.

Example: 𝑛-bit parity function.
Parity𝑛 𝑥 = 𝑥0 ⊕ 𝑥1 ⊕ ⋯ ⊕ 𝑥𝑛−1

…

𝑥1

|𝑥0⟩

𝑥𝑛−1 

0

…

Parity𝑛
𝑥1

|𝑥0⟩

𝑥𝑛−1 

…

|𝑥0 ⊕ 𝑥1 ⊕ ⋯ ⊕ 𝑥𝑛−1⟩

…

Derive on board:
• How to implement Parity in linear depth with CX?
• How to implement Parity in constant depth with Fanout?

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

=

Remark: These examples are “surprising” because 
none of these have efficient (constant-depth) classical 
circuit (with access to 1-bit and 2-bit gates and fanout).
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