

Quantum Gates

PART B

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

Principle #3 – Transformation

Unitary Transformation: The evolution of a quantum state can be described as a *norm-preserving linear transformation* (a.k.a. unitary matrix).

Norm-preserving:

$$\||\psi_i\rangle\|^2 = \||\psi_f\rangle\|^2 = 1$$

• Linear transformation:

Linear operator: $|\psi_f\rangle = U|\psi_i\rangle$, for some matrix U.

"Preserves inner product."

Unitary: $U^{\dagger}U = I$

- The process is **reversible** and **deterministic**: $U^{-1} = U^{\dagger}$
- In physics: "Coherent process"

Two-Qubit Gates

Examples:

Multi-Qubit Gates

Beyond two-qubit gates? Given any n-qubit unitary matrix U (of size 2^n -by- 2^n)

We can construct: **controlled-U Gate** ("quantum if-else") as a (n + 1) qubit gate:

New unitary of size 2^{n+1} -by- 2^{n+1} :

$$C-U = \begin{bmatrix} I_{2^n} & 0 \\ 0 & U \end{bmatrix}.$$

- I_{2^n} : 2^n -by- 2^n Identity matrix
- 0: all-zero matrix

Different from $I \otimes U$:

• C-U =
$$|0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes U$$

•
$$I \otimes U = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes U$$

$$C-U = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & u_{0,0} & \dots & u_{0,2^n-1} \\ & \vdots & \ddots & & \vdots \\ & & u_{2^n-1,0} & \dots & u_{2^n-1,2^n-1} \end{bmatrix}$$

$$V \otimes U = \begin{bmatrix} u_{0,0} & \dots & u_{0,2^n - 1} \\ \vdots & \ddots & \vdots \\ u_{2^n - 1,0} & \dots & u_{2^n - 1,2^n - 1} \end{bmatrix} \quad u_0$$

$$u_{0,0}$$
 ... $u_{0,2^n-1}$
 \vdots \ddots \vdots
 $u_{2^n-1,0}$... $u_{2^n-1,2^n-1}$

Unitary Transformations

Circuit #1:

Circuit #2:

They look different, but implement the same unitary:

$$HXH = Z, HZH = X$$

Circuit #3:

Circuit #4:

Flipping who's control and who's target.

Transforming from $|\psi_i angle$ to $|\psi_f angle$ in the Hilbert Space

Compiler optimization:

Finding shorter/easier circuits to implement U.

Copying Qubits?

Classical information can be copied:

Classical fanout gate that "duplicates" input $b \in \{0,1\}$

Can we do the same for quantum information?

No-cloning theorem: There's no unitary matrix that can transform arbitrary (unknown) quantum state $|\psi\rangle\otimes|0\rangle$ to $|\psi\rangle\otimes|\psi\rangle$.

Cloning is not possible

No-cloning theorem: There's no unitary matrix that can transform arbitrary (unknown) quantum state $|\psi\rangle \otimes |0\rangle$ to $|\psi\rangle \otimes |\psi\rangle$.

For any
$$\alpha, \beta$$
: $(\alpha|0\rangle + \beta|1\rangle) \otimes |0\rangle \longrightarrow (\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle)$
Not linear!

AFSOC, there is a universal cloner U that works for:

$$|0\rangle \otimes |0\rangle \xrightarrow{U} |0\rangle \otimes |0\rangle$$
 and $|+\rangle \otimes |0\rangle \xrightarrow{U} |+\rangle \otimes |+\rangle$

Since U is unitary, it must preserve inner product.

But $(\langle 0| \otimes \langle 0|)(|+\rangle \otimes |0\rangle) \neq (\langle 0| \otimes \langle 0|)(|+\rangle \otimes |+\rangle)$. Contradiction!

Remarks:

- No unitary works universally for all $|\psi\rangle$
- But we can find unitary that works for some $|\psi\rangle$.

Restricted Cloning

Example #1 (copying $|+\rangle$ state):

$$|0\rangle$$
 $|+\rangle$ $|+\rangle$

Any state with a known preparation circuit.

Example #2 (copying Fourier states):

Works for any $x \in \{0,1\}^2$

Any *subset* of states with the same known preparation circuit.

$$|\mu_k\rangle = \frac{1}{\sqrt{2}}\Big(|0\rangle + e^{2\pi ix/2^{n-k}}|1\rangle\Big)$$
, for some $x \in \{0,1\}^n$

Quantum Fanout Gate

Separate copies <u>not</u> possible:

Entangled copies are possible:

Along each basis $(a, b \in \{0,1\})$:

$$\alpha|00\rangle + \beta|11\rangle$$

"Copy along each basis"

More (entangled) copies are also possible:

 $|a\rangle$ $|a\rangle$ $|a\rangle$ $|a \oplus b\rangle$

 $\alpha|00000000\rangle + \beta|111111111\rangle$

What does this operation look like in terms of CX gates?

Can we do better (in "circuit depth")?

Quantum Fanout Gate

Quantum fanout: Not only possible, but efficient in circuit depth.

 $s_1 = m_1$

 $s_2 = m_1 \oplus m_2$

Prefix parity

 $s_3 = m_1 \oplus m_2 \oplus m_3$

Constant quantum depth
Logarithmic classical depth
1D nearest-neighbor

More about this in **Lecture 7** (Teleportation).

Computing Parity Function

Quantum fanout is powerful.

Example: *n*-bit parity function.

$$Parity_n(x) = x_0 \oplus x_1 \oplus \cdots \oplus x_{n-1}$$

Remark: These examples are "surprising" because none of these have efficient (constant-depth) classical circuit (with access to 1-bit and 2-bit gates and fanout).

Derive on board:

- How to implement Parity in *linear* depth with CX?
- How to implement Parity in constant depth with Fanout?

Quantum constant-depth circuit (with 1-q, 2-q, Fanout gates) can compute a large set of Boolean functions.

More examples:

- Majority function [Høyer, Špalek, 05]
- And function [Takahashi, Tani, 16]