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Mathematical Model of Quantum Computing
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Four Principles to model quantum systems mathematically:

1. Superposition:
The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space. 

2. Composition:
The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:
Time evolution of a quantum system is a unitary process.

4. Measurement:
Readout information from a quantum state causes the superposition state to collapse/project to one of 
its basis states randomly.

P Jordan: “Observations not only disturb what has to be measured, they produce it… 
We compel [the electrons] to assume their definite position.”



Principle #4: Measuring Qubits
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Before 
measurement

With prob: 𝑝0 = 𝛼 2 

With prob: 𝑝1 = 𝛽 2 

Z
0

1

The state of a quantum state 𝜓 = 𝛼 0 + 𝛽 1  is not directly observable. 
Measuring 𝜓  (in the Z basis) collapses it to either 0  or 1 , with probability 𝛼 2 and 𝛽 2, respectively.

𝜓

After 
measurement

Z

Z

0

1

Z

Z

The measurement process is probabilistic and irreversible and generally disturbs the quantum system.

Physically: E.g., observing an atom in its ground energy level ( 0 ) or its excited energy level ( 1 ).



Understanding Measurements as Projections

Measurement along the z basis (“standard basis” or “computational basis”):

Z
Each basis has a corresponding projector:

Π0 = 0 0 , Π1 = 1 1

Derive on board:
• What are the projected states?

• Π0|𝜓⟩
• Π1|𝜓⟩

• What about the inner products?
• 𝜓 Π0|𝜓⟩
• 𝜓 Π1|𝜓⟩

Collapsed states 
(how to normalize?)

Probabilities

𝜓  projects to either 0  or 1  

|𝜓⟩

|0⟩
𝛼|0⟩

• Probability of measuring 0 :

⟨0 𝜓 2

• Probability of measuring 1 :

⟨1 𝜓 2

|1⟩

𝛽|1⟩

y

|0⟩

|1⟩

Pr 0 =
𝑧 + 1

2
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Observable as a Hermitian Operator

For the standard-basis measurement, we take the Pauli Z operator: 

If we define a random variable z that takes 𝑍’s eigenvalues:
 
       
         𝑧 = 

+1 if |𝜓⟩ collapsed to  |0⟩  (with prob. 𝜓 Π0|𝜓⟩) 

−1 if |𝜓⟩ collapsed to  |1⟩  (with prob. 𝜓 Π1|𝜓⟩) 

What is the expectation value of z? 

𝔼 𝑧 = +1 ⋅ Pr 𝑧 = +1 + +1 ⋅ Pr 𝑧 = −1  

• In physics, such an operator 𝜎𝑍 = 𝑍 is called an 
observable to represent a physical quantity that 
can be measured.

𝑍 = +1 Π0 + −1 Π1 =
1 0
0 −1

  (Spectral theorem)

= 𝜓|𝑍|𝜓 ≡ 𝑧

• Measured values and probabilities are determined by 
the eigenvalues and eigenvectors of Z.

• An observable must be Hermitian. (Why?)
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|+⟩

|−⟩

Measuring in a Different Basis

Measurement along the x basis (“Hadamard basis”):

X
|+⟩

|−⟩

With prob: 𝑝+

With prob: 𝑝−

𝜓

Example:

𝜓 =
1

2
0 +

𝑖

2
1

For the following 𝜓 , what are the probabilities 𝑝+ and 𝑝−?

• 𝑝+ =
1+𝑖

2

2
=

1

2

• 𝑝− =
1−𝑖

2

2
=

1

2

• +|𝜓 =
1+𝑖

2

• −|𝜓 =
1−𝑖

2

If we define a random variable x:

+1 if |𝜓⟩ collapsed to  (with prob. 𝜓 Π+|𝜓⟩) 

−1 if |𝜓⟩ collapsed to  (with prob. 𝜓 Π−|𝜓⟩) 

The expectation value of x:  𝑥 ≡ 𝜓|𝑋|𝜓

𝑥 =
How is this implemented physically?
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Measuring in a Different Basis

Measurement along the x basis (“Hadamard basis”):

X
𝜓

Simulating x-basis measurement using quantum gates and standard-basis measurement?

Z
𝜓

y

|0⟩

|1⟩

Hadamard gate:
“Swaps x and z axes!”

𝐻
• It produces the same statistics as an x-basis measurement.
• Does it produce the same post-measurement state?

Experimental implication: Standard-basis measurement + quantum gates are computationally universal.  
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Heisenberg Uncertainty Principle

Z

X

y

|0⟩

|1⟩

𝜓

𝜓

The uncertainty principle states that both observables cannot yield definite (non-random) outcomes on the same state.

Scenario
#1:

Scenario
#2:

More formally, for two observables 𝐴, 𝐵 and a given quantum state 𝜓 :

Δ𝐴 ⋅ Δ𝐵 ≥
1

2
𝜓| 𝐴, 𝐵 |𝜓

where Δ𝐴 and Δ𝐵 are the standard deviation of observables 𝐴 and 𝐵, [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is their commutator.

If measuring 𝜓  in standard 
basis yields a definite outcome, 
then its Hadamard basis 
measurement cannot have a 
definite outcome.

|+⟩

|−⟩

With prob: 𝑝+

With prob: 𝑝−

With prob: 𝑝0

With prob: 𝑝1

|0⟩

|1⟩

Non-commuting observables are called incompatible: 
E.g., position and momentum of a particle cannot be simultaneously determined. 8



General Measurement: Born’s Rule

Given an observable 𝑂 = σ𝑛 𝑎𝑛𝐸𝑛, where 𝑎𝑛 ∈ ℝ and 𝐸𝑛𝐸𝑚 = 𝛿𝑛𝑚𝐸𝑛, 𝐸𝑛 = 𝐸𝑛
†

(real eigenvalues) (orthonormal projectors )

We can define the measurement by observable 𝑂 acting on quantum state 𝜓  to:

• Produce a (classical) readout value: 𝑎𝑛

• Collapse the quantum state to: 
𝐸𝑛 𝜓

𝜓|𝐸𝑛|𝜓

• With probability: 𝜓|𝐸𝑛|𝜓 .

The expectation value of this measurement:

𝑂 = ෍

𝑛

𝑎𝑛 Pr[readout = 𝑎𝑛] = ෍

𝑛

𝑎𝑛 𝜓|𝐸𝑛|𝜓 = 𝜓 ෍

𝑛

𝑎𝑛 𝐸𝑛 𝜓 = 𝜓 𝑂 𝜓
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Partial Measurement

Scenario #1: Suppose 𝜓𝐴𝐵 =
1

2
00 + 01 + 10 + |11⟩ . 

What if only Bob measures his qubit?

Z

(do nothing)

Derive on board:
What is the probability distribution of his measurement outcomes? 

𝐴

𝐵

Alice

Bob
𝜓𝐴𝐵  collapses to: 

if Bob readout is +1 (with prob.                  ) 

if Bob readout is −1 (with prob.                  ) 

+ ⊗ |0⟩

+ ⊗ |1⟩

1/2

1/2
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Partial Measurement

Scenario #2: Suppose 𝜓𝐴𝐵 =
1

2
00 +

1

2
01 +

1

2
11  

Z

Derive on board:
What is the probability distribution of his measurement outcomes? 

𝐴

𝐵

Alice

Bob
𝜓𝐴𝐵  collapses to: 

if Bob readout is +1 (with prob.                  ) 

if Bob readout is −1 (with prob.                  ) 

0 ⊗ |0⟩

+ ⊗ |1⟩

1/2

1/2

𝜓 = ෍

𝑗,𝑘

𝛼𝑗𝑘|𝑗𝑘⟩ = ෍

𝑘

෍

𝑗

𝛼𝑗𝑘|𝑗⟩ ⊗ |𝑘⟩ 

Let 𝛽𝑘 = σ𝑗 𝛼𝑗𝑘
2

, then we have 

𝜓 = ෍

𝑘

𝛽𝑘 ෍

𝑗

𝛼𝑗𝑘

𝛽𝑘
|𝑗⟩ ⊗ |𝑘⟩ 

“All amplitude consistent with k.” 

With probability 𝛽𝑘
2, the state 

collapses to:

෍

𝑗

𝛼𝑗𝑘

𝛽𝑘
|𝑗⟩ ⊗ |𝑘⟩

Qubit A Qubit B

More formally, we can re-write:

(do nothing)



Measuring One Qubit at a Time
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Scenario #3: Suppose 𝜓𝐴𝐵 =
1

2
00 +

1

2
01 +

1

2
11

Bob measures his qubit first, then Alice measures hers. 

Z

𝐴

𝐵

Alice

Bob

Z
(do nothing)

(do nothing)

Bob’s Statistics
States after Bob’s 

measurement

Pr 0 𝐵 =
1

2

2

=
1

2
00

Pr 1 𝐵

=
1

2

2

+
1

2

2

=
1

2

1

2
01 +

1

2
11

Alice’s Statistics
State after Alice’s 

measurement

Pr 0 𝐴| 0 𝐵 = 1 00

Pr 1 𝐴| 0 𝐵 = 0 −

Pr 0 𝐴| 1 𝐵 =
1

2
01

Pr 1 𝐴| 1 𝐵 =
1

2
11



Measuring One Qubit at a Time
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Scenario #4: Suppose 𝜓𝐴𝐵 =
1

2
00 +

1

2
01 +

1

2
11 . 

Z𝐴

𝐵

Alice

Bob

Z
(do nothing)

(do nothing)

Had Alice measured first: What is the probability distribution and collapsed state?

Alice’s Statistics
States after Alice’s 

measurement

Pr 0 𝐴

=
1

2

2

+
1

2

2

=
3

4

2

6
00 +

1

3
01

Pr 1 𝐴 =
1

2

2

=
1

4
11

Bob’s Statistics
State after Bob’s 

measurement

Pr 0 𝐵| 0 𝐴 =
2

3
00

Pr 1 𝐵| 0 𝐴 =
1

3
01

Pr 0 𝐵| 1 𝐴 = 0 −

Pr 1 𝐵| 1 𝐴 = 1 11

Alice’s Statistics
States after Alice’s 

measurement

Pr 0 𝐴

=
1

2

2

+
1

2

2

=
3

4

2

6
00 +

1

3
01

Pr 1 𝐴 =
1

2

2

=
1

4
11

Bob’s Statistics
State after Bob’s 

measurement

Pr 0 𝐵| 0 𝐴 =
2

3
00

Pr 1 𝐵| 0 𝐴 =
1

3
01

Pr 0 𝐵| 1 𝐴 = 0 −

Pr 1 𝐵| 1 𝐴 = 1 11



Joint Measurement
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𝐴

𝐵

Alice

Bob

Z

Z

Measuring two qubits jointly using observable: 𝑂 = 𝑍 ⊗ 𝑍 =

1
−1

−1
1

 

“Measuring parity of A and B.”

= +1 00 00 + 11 11
   + −1 01 01 + 10 10

𝐸+: even parity

𝐸−: odd parity

Measuring 𝑍 ⊗ 𝑍 collapses quantum state 𝜓  to:

•
𝐸+ 𝜓

𝜓|𝐸+|𝜓
 with probability: 𝜓|𝐸+|𝜓 .

•
𝐸− 𝜓

𝜓|𝐸−|𝜓
 with probability: 𝜓|𝐸−|𝜓 .

Example: 𝜓𝐴𝐵 =
1

2
00 +

1

2
01 +

1

2
11  collapses to: 

(with prob.                                        ) 

(with prob.                                        ) 

2

6
00 +

1

3
|11⟩ 

01

1

2

2
+

1

2

2
=

3

4
 

1

2

2
=

1

4
 even evenodd



Joint Measurement

Simulating joint measurement using quantum gates and (single-qubit) standard-basis measurement?

Z

Z

Getting the measurement statistics of the “parity” basis (e.g., 𝑍 ⊗ 𝑍 ) requires:
• Obtaining one bit of information, and
• Entangling gates. 

Z
𝑈=

Derive on board: Finding 𝑈 such that
𝑂 = 𝑍 ⊗ 𝑍 = 𝑈† 𝑍 ⊗ 𝐼 𝑈

Z
= It samples from the correct distribution, 

but does it get the correct post-meas. states?
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Joint Measurement

Simulating joint measurement using quantum gates and (single-qubit) standard-basis measurement?

Z

Z

Getting the measurement statistics and post meas. state of the “parity” basis (e.g., 𝑍 ⊗ 𝑍 ) requires:
• Obtaining one bit of information, and
• Entangling gates, and
• Collapsing qubits to their appropriate superposition. 

=

Derive on board: What’re the effective 
projectors on the two (data) qubits?

Z

Z

𝐻 𝐻0 Z

Ancillary qubit

=

𝐻 𝐻0 Z
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