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Mathematical Model of Quantum Computing

Four Principles to model quantum systems mathematically:

1. Superposition:
The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space.

2. Composition:
The joint state of many (independent) guantum systems is the tensor product of component states.

3. Transformation:
Time evolution of a quantum system is a unitary process.

4. Measurement:
Readout information from a quantum state causes the superposition state to collapse/project to one of

its basis states randomly.

P Jordan: “Observations not only disturb what has to be measured, they produce it...

We compel [the electrons] to assume their definite position.”
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Principle #4: Measuring Qubits

The state of a quantum state |[Y) = a|0) + S|1) is not directly observable.
Measuring |1) (in the Z basis) collapses it to either |0) or | 1), with probability |a|? and | 5], respectively.

After

Before
measurement

measurement

With prob: py, = |al? o
Q- o

With prob: p; = |B|?

The measurement process is probabilistic and irreversible and generally disturbs the quantum system.

Physically: E.g., observing an atom in its ground energy level (|0)) or its excited energy level (| 1)).
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Understanding Measurements as Projections

Measurement along the z basis (“standard basis” or “computational basis”):

Each basis has a corresponding projector:
Z Mo = [0)0l, My = |1)(1]

|1) projects to either |0) or |1) Derive on board:
* What are the projected states?

« IplY) Collapsed states
|(()|1/))|2 o II1|Y) (how to normalize?)

* Probability of measuring |0):

* Probability of measuring |1): . \what about the inner products?

[(1I)1? * (Wl |yp)
* (Wl yp)

Probabilities




Observable as a Hermitian Operator

For the standard-basis measurement, we take the Pauli Z operator:
. 1 0
Z=HDly+ (DI = [0 _1] (Spectral theorem)

If we define a random variable z that takes Z’s eigenvalues: |\, ad values and orobabilities are determined by

the eigenvalues and eigenvectors of Z.

* In physics, such an operator 0, = Z is called an
observable to represent a physical quantity that
can be measured.

{ +1 if |) collapsed to@ (with prob. (¥ |ITy|))
7 =
—1if |3) collapsed to @ (with prob. (Y |I1;|y))

What is the expectation value of z?

* An observable must be Hermitian. (Why?)
E[z] = (+1) - Pr[z = +1] + (+1) - Pr[z = —1]

= W|Z|) = (2)
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Measuring in a Different Basis

Example:

Measurement along the x basis (“Hadamard basis”):
For the following |y), what are the probabilities p,. and p_?

. 1 [

With prob: p, _ |Y) = —0) + —]1)
\ @ 1+i « p, = 1_"" 2 _1
With prob: p_ ) = ' i
C (- = == =3

If we define a random variable x:
{ +1if i) collapsed to I?’(With prob. (I 1)) How is this implemented physically?
X =
—1if [) collapsed to@(with prob. (Y|II_|y))

The expectation value of x: (x) = (Y |X|)
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Measuring in a Different Basis

Measurement along the x basis (“Hadamard basis”): Hadamard gate:

“Swaps x and z axes

|I)

2

)

Simulating x-basis measurement using quantum gates and standard-basis measurement?

[Y) * |t produces the same statistics as an x-basis measurement.
* Does it produce the same post-measurement state?

Experimental implication: Standard-basis measurement + quantum gates are computationally universal.
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Heisenberg Uncertainty Principle

The uncertainty principle states that both observables cannot yield definite (non-random) outcomes on the same state.
More formally, for two observables A, B and a given quantum state [):

1
AA-AB = Z[(pI1A, Bl [y
where AA and AB are the standard deviation of observables A and B, [A, B] = AB — BA is their commutator.

With prob: py @
Scenario h/J) . .
1. — Z @ If measuring |y) in standard
With prob: p, basis yields a definite outcome,
then its Hadamard basis
With prob: p., I4+) — measurement cannot have a Ay}
-J: < ““

Scenario ) X ‘{ definite outcome.
#2: @
With prob: p_

Non-commuting observables are called incompatible:
E.g., position and momentum of a particle cannot be simultaneously determined.



General Measurement: Born’s Rule

Given an observable O = ), a,FE,,, where a,, € Rand E,E,,;, = 6ymEn En = Ef;

(real eigenvalues) (orthonormal projectors )

We can define the measurement by observable O acting on quantum state |y) to:

* Produce a (classical) readout value: a,,

En|Y)
V{YIER| )

* Collapse the quantum state to:

* With probability: (Y|E,|y).

The expectation value of this measurement:

(0) = 2 a, Pr[readout = a,] = z a, (Y|E,|Y) = <1,IJ

n n

(S.enm)

n

l/J> = (Yl0ly)
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Partial Measurement

Scenario #1: Suppose [Y,) = = (/00) + |01) + [10) + [11)).

What if only Bob measures his qubit?

Alice

@ (do nothing)

Derive on board:

What is the probability distribution of his measurement outcomes?

|+) ® |0) if Bob readoutis +1 (with prob. 1/2 )
|Wap) collapses to:

|+) @ |1) ifBob readoutis —1 (with prob. 1/2 )




Partial Measurement

Scenario #2: Suppose [45) = % 100) +=[01) +]11)

Derive on board:

Alice . What is the probability distribution of his measurement outcomes?
a (do nothing)
|0) @ |0) ifBob readoutis +1 (with prob. 1/2 )
|Wap) collapses to:
Bob |+) @ |1) ifBob readoutis —1 (with prob. 1/2 )

£ .
Q Z “All amplitude consistent with k.”

With probability [)’,%, the state
collapses to:

. "
)= alik) =Z<z a,-km)@ ) =Zﬁk< %m) ® k) ( 4:|j>> ® k)
,k k ] k ' J
] : ] Qubit A QubitB

. 2
More formally, we can re-write: Let B, = Zjlajkl _then we have



Measuring One Qubit at a Time

Scenario #3: Suppose Y, ) = % |00) + % |01) + % |11)
Bob measures his qubit first, then Alice measures hers.

Alice Bob’s Statistics States after Bob’s Alice’s Statistics State after Alice’s
(do nothing) measurement measurement
Z -
, 2 Pr[|0)4|10)5] =1 |00)
Pr{|0);] = <i> - 100)
5] =
V2] 2 Pr[|1)4]10)5] = 0 -
Bob
hi 1
v (do nothing) Pr[|1)32] , " " Pr[]0) 4|1 1) ] =3 |01)
1 1 1 | —=|01) +—]11)
=(5) +|5) =5 | V2 V2 1
2 2) 2 Pr{I D4l D)p] =5 111)




Measuring One Qubit at a Time

Scenario #4: Suppose Y, ) = % |00) + % |01) + % |11).
Had Alice measured first: What is the probability distribution and collapsed state?

Alice

Alice’s Statistics

States after Alice’s

Bob’s Statistics

State after Bob’s

(do nothing) measurement measurement
@ o PO, , 1 Pril0)110)] = 2 100)
Bob i g_z ' <5> 6 0B pinslion) — 01)
Q S 2 K Pr{|0)5]I1),4] = 0 -
% Pr{|1),] = (%)2 =71} |11) Pr{[1)p|l1) 4] =1 |11)




Joint Measurement

1 1 E: even parity
Measuring two qubits jointly using observable: 0 = Z ® Z = —1 4 = (+1(00}00] + [11)(11])
’ +(—=1)(|01){01] + [10)(10])
Alice E_: odd parity
@ 7 Measuring Z @ Z collapses quantum state |y) to:
E . .
S0 . ﬁwnh probability: (Y|E, |Y).
0
B Z E_ . -
Q . ﬁwnh probability: (W|E_|).

“Measuring parity of Aand B

Example: [Y,5) = % |00) + % |01) + % |11) collapses to:

2 1 . 1 2 1 2 _3
even odd even

|01) (with prob. (%) — i )
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Joint Measurement

Simulating joint measurement using quantum gates and (single-qubit) standard-basis measurement?

Getting the measurement statistics of the “parity” basis (e.g., {(Z @ Z)) requires:
e Obtaining one bit of information, and
* Entangling gates.

: . Z Derive on board: Finding U such that
, B u 0=2Q2z=UZQNU
P VA
_ It samples from the correct distribution,
but does it get the correct post-meas. states?
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Joint Measurement

Simulating joint measurement using quantum gates and (single-qubit) standard-basis measurement?

Getting the measurement statistics and post meas. state of the “parity” basis (e.g., (Z @ Z)) requires:
* Obtaining one bit of information, and

* Entangling gates, and
e Collapsing qubits to their appropriate superposition.

Ancillary qubit \
0) H H ? H{ Z 0) | H HZ

oz I B A R o

Derive on board: What’re the effective
projectors on the two (data) qubits?
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