

Quantum Measurements

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

Mathematical Model of Quantum Computing

Four Principles to model quantum systems mathematically:

1. Superposition:

The state of a qubit is a normalized complex vector in the two-dimensional Hilbert Space.

2. Composition:

The joint state of many (independent) quantum systems is the tensor product of component states.

3. Transformation:

Time evolution of a quantum system is a unitary process.

4. Measurement:

Readout information from a quantum state causes the superposition state to collapse/project to one of its basis states randomly.

P Jordan: "Observations not only disturb what has to be measured, they produce it... We compel [the electrons] to assume their definite position."

Principle #4: Measuring Qubits

The state of a quantum state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ is *not* directly observable.

Measuring $|\psi\rangle$ (in the Z basis) collapses it to either $|0\rangle$ or $|1\rangle$, with probability $|\alpha|^2$ and $|\beta|^2$, respectively.

The measurement process is probabilistic and irreversible and generally disturbs the quantum system.

Physically: E.g., observing an atom in its ground energy level ($|0\rangle$) or its excited energy level ($|1\rangle$).

Understanding Measurements as Projections

Measurement along the **z basis** ("standard basis" or "computational basis"):

Each basis has a corresponding **projector**:

$$\Pi_0 = |0\rangle\langle 0|, \qquad \Pi_1 = |1\rangle\langle 1|$$

 $|\psi\rangle$ **projects** to either $|0\rangle$ or $|1\rangle$

- Probability of measuring $|0\rangle$: $|\langle 0|\psi\rangle|^2$
- Probability of measuring $|1\rangle$: $|\langle 1|\psi\rangle|^2$

Derive on board:

- What are the projected states?
 - $\Pi_0|\psi\rangle$

Collapsed states

 $\Pi_1|\psi\rangle$

(how to normalize?)

- What about the inner products?
 - $\langle \psi | \Pi_0 | \psi \rangle$

 $\langle \psi | \Pi_1 | \psi \rangle$

Probabilities

Observable as a Hermitian Operator

For the standard-basis measurement, we take the Pauli Z operator:

$$Z = (+1)\Pi_0 + (-1)\Pi_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (Spectral theorem)

If we define a **random variable** z that takes Z's eigenvalues:

$$z = \begin{cases} +1 \text{ if } |\psi\rangle \text{ collapsed to } \boxed{0} \text{ (with prob. } \langle\psi|\Pi_0|\psi\rangle) \\ -1 \text{ if } |\psi\rangle \text{ collapsed to } \boxed{1} \text{ (with prob. } \langle\psi|\Pi_1|\psi\rangle) \end{cases}$$

What is the **expectation value** of z?

$$\mathbb{E}[z] = (+1) \cdot \Pr[z = +1] + (+1) \cdot \Pr[z = -1]$$
$$= \langle \psi | Z | \psi \rangle \equiv \langle z \rangle$$

- Measured values and probabilities are determined by the eigenvalues and eigenvectors of Z.
- In physics, such an operator $\sigma_Z = Z$ is called an **observable** to represent a physical quantity that can be measured.
- An observable must be Hermitian. (Why?)

Measuring in a Different Basis

Measurement along the **x basis** ("Hadamard basis"):

Example:

For the following $|\psi\rangle$, what are the probabilities p_+ and p_- ?

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle$$

•
$$\langle +|\psi\rangle = \frac{1+i}{2}$$

• $p_{+} = \left|\frac{1+i}{2}\right|^{2} = \frac{1}{2}$
• $p_{-} = \left|\frac{1-i}{2}\right|^{2} = \frac{1}{2}$

If we define a random variable x:

$$x = \begin{cases} +1 \text{ if } |\psi\rangle \text{ collapsed to } |+\rangle \text{ (with prob. } \langle\psi|\Pi_+|\psi\rangle) \\ -1 \text{ if } |\psi\rangle \text{ collapsed to } |-\rangle \text{ (with prob. } \langle\psi|\Pi_-|\psi\rangle) \end{cases}$$

The **expectation value** of x: $\langle x \rangle \equiv \langle \psi | X | \psi \rangle$

How is this implemented physically?

Measuring in a Different Basis

Measurement along the **x basis** ("Hadamard basis"):

Hadamard gate: "Swaps x and z axes!"

Simulating x-basis measurement using quantum gates and standard-basis measurement?

- It produces the **same statistics** as an x-basis measurement.
- Does it produce the same post-measurement state?

Experimental implication: Standard-basis measurement + quantum gates are computationally universal.

Heisenberg Uncertainty Principle

The uncertainty principle states that both observables cannot yield definite (non-random) outcomes on the same state.

More formally, for two observables A, B and a given quantum state $|\psi\rangle$:

$$\Delta A \cdot \Delta B \ge \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle|$$

where ΔA and ΔB are the standard deviation of observables A and B, [A,B]=AB-BA is their commutator.

If measuring $|\psi\rangle$ in standard basis yields a definite outcome, then its Hadamard basis measurement **cannot** have a definite outcome.

Non-commuting observables are called **incompatible**:

E.g., position and momentum of a particle cannot be simultaneously determined.

General Measurement: Born's Rule

Given an **observable**
$$O = \sum_n a_n E_n$$
, where $a_n \in \mathbb{R}$ and $E_n E_m = \delta_{nm} E_n$, $E_n = E_n^{\dagger}$ (real eigenvalues) (orthonormal projectors)

We can define the measurement by observable O acting on quantum state $|\psi\rangle$ to:

- Produce a (classical) **readout** value: a_n
- **Collapse** the quantum state to: $\frac{E_n|\psi\rangle}{\sqrt{\langle\psi|E_n|\psi\rangle}}$
- With **probability**: $\langle \psi | E_n | \psi \rangle$.

The **expectation value** of this measurement:

$$\langle O \rangle = \sum_{n} a_n \Pr[\text{readout} = a_n] = \sum_{n} a_n \langle \psi | E_n | \psi \rangle = \left\langle \psi \left| \left(\sum_{n} a_n E_n \right) \right| \psi \right\rangle = \langle \psi | O | \psi \rangle$$

Partial Measurement

Scenario #1: Suppose $|\psi_{AB}\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$. What if only Bob measures his qubit?

Derive on board:

What is the **probability distribution** of his measurement outcomes?

$$|\psi_{AB}\rangle$$
 collapses to:
$$\begin{cases} |+\rangle \otimes |0\rangle & \text{if Bob readout is } +1 \text{ (with prob. } 1/2) \\ |+\rangle \otimes |1\rangle & \text{if Bob readout is } -1 \text{ (with prob. } 1/2) \end{cases}$$

10

Partial Measurement

Scenario #2: Suppose
$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|11\rangle$$

More formally, we can re-write:

$$|\psi\rangle = \sum_{j,k} \alpha_{jk} |jk\rangle = \sum_{k} \left(\sum_{j} \alpha_{jk} |j\rangle\right) \otimes |k\rangle \qquad |\psi\rangle = \sum_{k} \beta_{k} \left(\sum_{j} \frac{\alpha_{jk}}{\beta_{k}} |j\rangle\right) \otimes |k\rangle$$

Derive on board:

What is the **probability distribution** of his measurement outcomes?

$$|\psi_{AB}\rangle$$
 collapses to: $\begin{cases} |0\rangle\otimes|0\rangle & \text{if Bob readout is } +1 \text{ (with prob. } 1/2) \\ |+\rangle\otimes|1\rangle & \text{if Bob readout is } -1 \text{ (with prob. } 1/2) \end{cases}$

-"All amplitude consistent with k."

Let
$$\beta_k = \sqrt{\sum_j \left|\alpha_{jk}\right|^2}$$
, then we have collapses to: $|\psi\rangle = \sum_k \beta_k \left(\sum_j \frac{\alpha_{jk}}{\beta_k} |j\rangle\right) \otimes |k\rangle$ With probability β_k^2 , the state collapses to: $\left(\sum_j \frac{\alpha_{jk}}{\beta_k} |j\rangle\right) \otimes |k\rangle$

$$\left(\sum_{j} \frac{\alpha_{jk}}{\beta_{k}} |j\rangle\right) \otimes |k\rangle$$
Qubit A Qubit B

Measuring One Qubit at a Time

Scenario #3: Suppose $|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|11\rangle$

Bob measures his qubit first, then Alice measures hers.

Bob's Statistics	States after Bob's measurement	Alice's Statistics	State after Alice's measurement
$\Pr[0\rangle_B] = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}$	00>	$\Pr[0\rangle_A 0\rangle_B] = 1$	00>
		$\Pr[1\rangle_A 0\rangle_B] = 0$	_
$ \begin{array}{cccc} \operatorname{Pr}[1\rangle_{B}] \\ \left(1\right)^{2} & \left(1\right)^{2} & 1 \end{array} $	$\frac{1}{2} \left[\frac{1}{2} \right]^2 + \left(\frac{1}{2} \right)^2 = \frac{1}{2} \qquad \frac{1}{\sqrt{2}} 01\rangle + \frac{1}{\sqrt{2}} 11\rangle \qquad \frac{\Pr[0\rangle_A 1\rangle_B] = \frac{1}{2}}{\Pr[1\rangle_A 1\rangle_B] = \frac{1}{2}}$	$\Pr[0\rangle_A 1\rangle_B] = \frac{1}{2}$	01>
$= \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) = \frac{1}{2}$		$\Pr[1\rangle_A 1\rangle_B] = \frac{1}{2}$	11>

Measuring One Qubit at a Time

Scenario #4: Suppose
$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|11\rangle$$
.

Had Alice measured first: What is the probability distribution and collapsed state?

Alice's Statistics	States after Alice's measurement	Bob's Statistics	State after Bob's measurement
$\Pr[0\rangle_A] / 1 \rangle^2 / 1 \rangle^2$	$\frac{2}{\sqrt{6}} 00\rangle + \frac{1}{\sqrt{3}} 01\rangle$	$\Pr[0\rangle_B 0\rangle_A] = \frac{2}{3}$	00>
$= \left(\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{2}\right)$		$\Pr[1\rangle_B 0\rangle_A] = \frac{1}{3}$	01⟩
$=\frac{1}{4}$		$\Pr[0\rangle_B 1\rangle_A] = 0$	_
$\Pr[1\rangle_A] = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	11⟩	$\Pr[1\rangle_B 1\rangle_A] = 1$	11⟩
(2) 4			

Joint Measurement

Measuring two qubits **jointly** using observable:
$$0 = Z \otimes Z = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = (+1)(|00\rangle\langle 00| + |11\rangle\langle 11|) + (-1)(|01\rangle\langle 01| + |10\rangle\langle 10|)$$

Alice

 E_+ : even parity

 E_- : odd parity

Measuring $Z \otimes Z$ collapses quantum state $|\psi\rangle$ to:

- $\frac{E_+|\psi\rangle}{\sqrt{\langle\psi|E_+|\psi\rangle}}$ with probability: $\langle\psi|E_+|\psi\rangle$.
- $\frac{E_-|\psi\rangle}{\sqrt{\langle\psi|E_-|\psi\rangle}}$ with probability: $\langle\psi|E_-|\psi\rangle$.

"Measuring parity of A and B."

Example:
$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|11\rangle$$
 collapses to: $\left\{\frac{\frac{2}{\sqrt{6}}|00\rangle + \frac{1}{\sqrt{3}}|11\rangle}{|01\rangle}$ (with prob. $\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4}$) even odd even

Joint Measurement

Simulating joint measurement using quantum gates and (single-qubit) standard-basis measurement?

Getting the measurement statistics of the "parity" basis (e.g., $\langle Z \otimes Z \rangle$) requires:

- Obtaining one bit of information, and
- Entangling gates.

<u>Derive on board</u>: Finding U such that $O = Z \otimes Z = U^{\dagger}(Z \otimes I)U$

It samples from the correct distribution, but does it get the correct post-meas. states?

Joint Measurement

Simulating joint measurement using quantum gates and (single-qubit) standard-basis measurement?

Getting the measurement statistics **and** post meas. state of the "parity" basis (e.g., $\langle Z \otimes Z \rangle$) requires:

- Obtaining one bit of information, and
- Entangling gates, and
- Collapsing qubits to their appropriate superposition.

<u>Derive on board</u>: What're the effective projectors on the two (data) qubits?