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A Tour on the Bloch Sphere

Carlton M. Caves: “Hilbert space is a big space.” H = i ll 1 ] G = [1 O]
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Performing gate sequence: H, S, H,ST H from the |0) state.

We cannot get to an arbitrary point on the Bloch sphere from |0) using only H and S gates.
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H and S Gates: Changing Principal Axes
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Clifford Gates

Definition (Clifford group):

On a single qubit, the Clifford group is the set of unitaries that maps Pauli’s to Pauli’s under conjugation.

A unitary U is a Clifford gate if:
UPUT e P
for every P € P, where P = {I, X, Y, Z} (up to global phase +1, +1i).

Generator: H,S. (Any single-qubit Clifford operation can be expressed as a sequence of H, S.)

Definition (n-qubit Clifford group): “Pauli string”: X QI QK Y

On n qubits, the Clifford group is the set of unitaries that maps Pauli string to Pauli string under conjugation.
A unitary U is a Clifford gate if:

UPUT € P,
for every P € P,,, where P, = {I, X, Y, Z}®" (up to global phase +1, +i).

Generator: H,S, CNOT. (Any n-qubit Clifford operation can be expressed as a sequence of H, S, CNOT.)
4



What about Arbitrary Gates?

Single-Qubit Unitary U € C2%?;

104 B i
Uoo uOl] _ [ e™” cos 6 e't sing 3 independent real numbers

o=  co #
Uip U1 —ePsin® —e@cosB

n-Qubit Unitary U € C2"*2";
* Total degrees of freedom: 22" — 1 independent real numbers.

In practice: rather than realizing a unitary exactly,
we usually ask whether we can approximate it to within error tolerance €.



Universal for Single-Qubit Unitaries: R, (8), R,(08) gates

For single qubit, R,.(0), R,(0) gates are “universal”:
* State preparation: Any single-qubit state can be prepared by a sequence of R,.(6), R,(6) gates from |0).

* Unitary synthesis: Any single-qubit unitary can be synthesized by a sequence of R,.(8), R,(0) gates.

Let’s consider the state version: How do we get to an arbitrary point on Bloch sphere from |0)?
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Universal for Single-Qubit Unitaries: R, (8) , R,(0) gates

Now consider the unitary version: How do we get an arbitrary rotation by a sequence of R,.(8), R,(6) gates?
10)

Example: How to implement a rotation gate R; () along the axis i = NG
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Universal for Single-Qubit Unitaries: R, (8), R,(08) gates

10)

For single qubit, three rotations are enough.
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Example: How to implement Hadamard gate R;(m), i = 7 ?
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ls Hadamard also a Rotation?

gLl 17]_x+z
Example.H—ﬁ[1 _1]—\/5

Recall from lecture 5: \
H is a reflection about |h) = cos /8 |0) + sint/8]|1)
2|hh| —1 =H

In fact, H is also a rotation about axis |h) by 180°: R4 ()
: o XH2
Rotation axis: n = NG

Rotation matrix (derive on board):

_E(ﬂ)
Ri(m) =e 2\V2/ = —iH (Uptoglobalphase.)

In practice, H gate is often an operation that is natively supported by hardware.
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Implementing H gate

VA VA
Also works: H = R, (Z) ZR,, (— Z) ..." //
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Example: Implementing Hadamard gate R;(m), i = xTJ;Z $
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Universal for Single-Qubit Unitaries: H, T gates 7=, ,-iws

. _ . Synthesizing arbitrary z rotations usingH, S, and T:
For a single qubit, H, T gates are universal! - Solovay-Kitaev: #T = 0(log®(1/¢)),c ~ 3
* Ross-Selinger: #T = 0(log(1/¢) + loglog(1/€))

After H,S,H,T,H,T gates.

Gate sequence: H,S,H,T,H,T, (states in Fig (a)) H,T,H,T,H,T,H,T,H,T,S,H,TH,THTH,TS,HTH,TH, (states in Fig (b))
TH,TH,TSHTSHTHTHTHTHTSHTHTHTSHTSHTHTSHTSHTSHTHTHTHTSHTHTHTHTHTS,HTSHTHTS,HTHTS,HTS,H, (states in Fig (c))
T,S,H,T,S,H,THTS,HTSHTSHTSHTHTHTSHTS,HTSHTHTHTHTSHTHTSHTHTHTSHTHTHTHTSHTHTS,HTHTS,HTS,HTSHTH,T, (states in Fig (d))
H,T,H,TH,THTHTSHTHTSHTHTHTSMHTSHTHTHTS,HTS,HTSHTHTSHTHTHTHTS,HTS,HTS,H,S,S,S (states in Fig (e)) 11
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