

Quantum Compiling

CPSC 4470/5470

Introduction to Quantum Computing

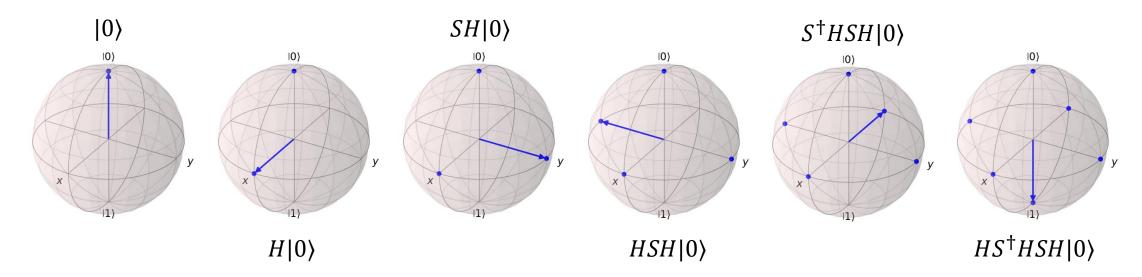
Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

A Tour on the Bloch Sphere

Carlton M. Caves: "Hilbert space is a big space."

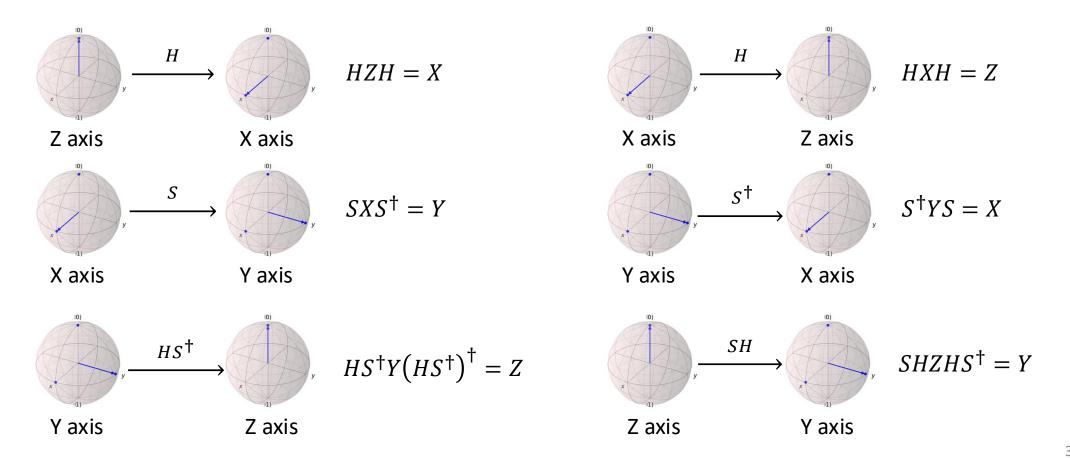
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$



Performing gate sequence: H, S, H, S^{\dagger}, H from the $|0\rangle$ state.

We **cannot** get to an arbitrary point on the Bloch sphere from $|0\rangle$ using only H and S gates.

H and S Gates: Changing Principal Axes



Clifford Gates

Definition (Clifford group):

On a single qubit, the Clifford group is the set of unitaries that maps Pauli's to Pauli's under conjugation. A unitary U is a Clifford gate if:

$$UPU^{\dagger} \in \mathcal{P}$$

for every $P \in \mathcal{P}$, where $\mathcal{P} = \{I, X, Y, Z\}$ (up to global phase $\pm 1, \pm i$).

Generator: H, S. (Any single-qubit Clifford operation can be expressed as a sequence of H, S.)

Definition (*n*-qubit Clifford group):

"Pauli string": $X \otimes I \otimes Y$

On n qubits, the Clifford group is the set of unitaries that maps Pauli string to Pauli string under conjugation. A unitary U is a Clifford gate if:

$$UPU^{\dagger} \in \mathcal{P}_n$$

for every $P \in \mathcal{P}_n$, where $\mathcal{P}_n = \{I, X, Y, Z\}^{\otimes n}$ (up to global phase $\pm 1, \pm i$).

Generator: H, S, CNOT. (Any n-qubit Clifford operation can be expressed as a sequence of H, S, CNOT.)

What about Arbitrary Gates?

Single-Qubit Unitary $U \in \mathbb{C}^{2 \times 2}$:

$$U = \begin{bmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{bmatrix} = \begin{bmatrix} e^{i\alpha}\cos\theta & e^{i\beta}\sin\theta \\ -e^{i\beta}\sin\theta & -e^{-i\alpha}\cos\theta \end{bmatrix}$$
 3 independent real numbers

n-Qubit Unitary $U \in \mathbb{C}^{2^n \times 2^n}$:

• Total degrees of freedom: $2^{2n} - 1$ independent real numbers.

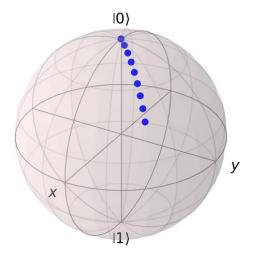
In practice: rather than realizing a unitary *exactly*, we usually ask whether we can *approximate* it to within error tolerance ϵ .

Universal for Single-Qubit Unitaries: $R_{\chi}(\theta)$, $R_{z}(\theta)$ gates

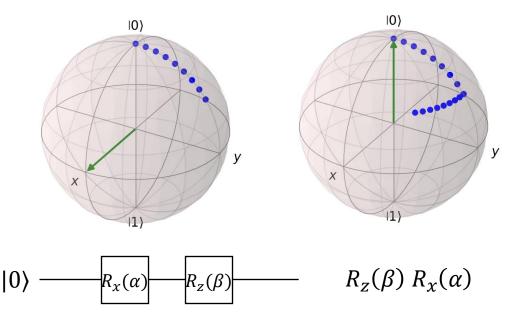
For single qubit, $R_x(\theta)$, $R_z(\theta)$ gates are "universal":

- State preparation: Any single-qubit state can be prepared by a sequence of $R_x(\theta)$, $R_z(\theta)$ gates from $|0\rangle$.
- Unitary synthesis: Any single-qubit unitary can be synthesized by a sequence of $R_x(\theta)$, $R_z(\theta)$ gates.

Let's consider the *state* version: How do we get to an **arbitrary point on Bloch sphere** from $|0\rangle$?

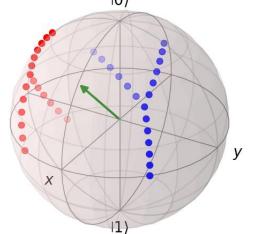


Geodesic path from $|0\rangle$.

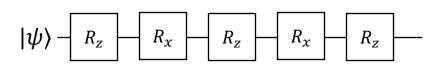


Universal for Single-Qubit Unitaries: $R_{\chi}(\theta)$, $R_{z}(\theta)$ gates

Now consider the *unitary* version: How do we get an **arbitrary rotation** by a sequence of $R_{\chi}(\theta)$, $R_{Z}(\theta)$ gates?

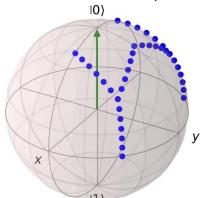


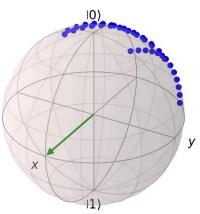
Example: How to implement a rotation gate $R_{\hat{n}}(\pi)$ along the axis $\hat{n} = \frac{\hat{x} + \hat{z}}{\sqrt{2}}$?

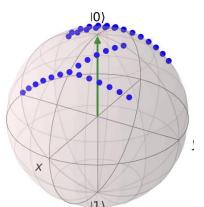


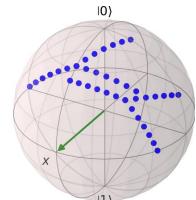
$$R_z(-\alpha) R_x(-\beta) R_z(\gamma) R_z(\beta) R_z(\alpha)$$

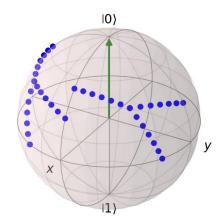
$$R_{\hat{n}}(\pi) = R_z \left(-\frac{\pi}{2} \right) R_x \left(-\frac{\pi}{4} \right) R_z(\pi) R_x \left(\frac{\pi}{4} \right) R_z \left(\frac{\pi}{2} \right)$$





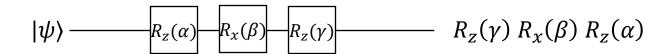




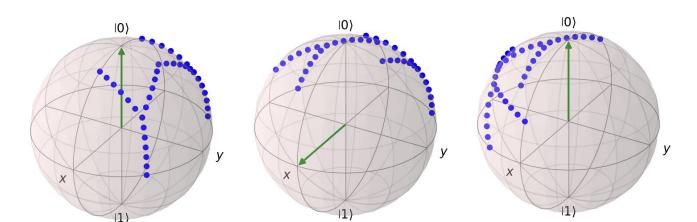


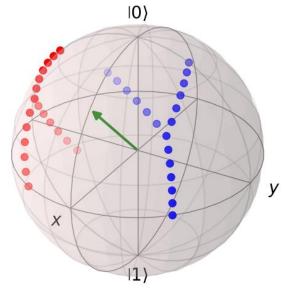
Universal for Single-Qubit Unitaries: $R_{\chi}(\theta)$, $R_{z}(\theta)$ gates

For single qubit, three rotations are enough.



Example: How to implement Hadamard gate $R_{\hat{n}}(\pi)$, $\hat{n} = \frac{\hat{x} + \hat{z}}{\sqrt{2}}$?





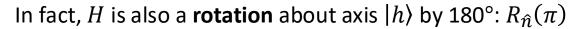
$$R_{\hat{n}}(\pi) = R_z \left(\frac{\pi}{2}\right) R_x \left(\frac{\pi}{2}\right) R_z \left(\frac{\pi}{2}\right)$$

Is Hadamard also a Rotation?

Example:
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{X+Z}{\sqrt{2}}$$

Recall from lecture 5:

$$H$$
 is a **reflection** about $|h\rangle = \cos \pi/8 |0\rangle + \sin \pi/8 |1\rangle$ $2|h\rangle\langle h| - I = H$

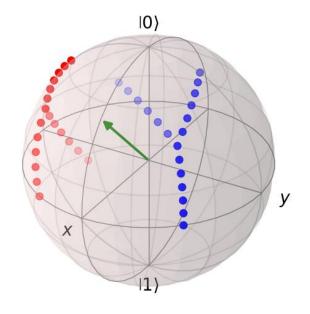


Rotation axis:
$$\hat{n} = \frac{\hat{x} + \hat{z}}{\sqrt{2}}$$

Rotation matrix (<u>derive on board</u>):

$$R_{\widehat{n}}(\pi) = e^{-\frac{i\pi}{2}\left(\frac{X+Z}{\sqrt{2}}\right)} = -iH$$
 (Up to global phase.)

In practice, H gate is often an operation that is natively supported by hardware.

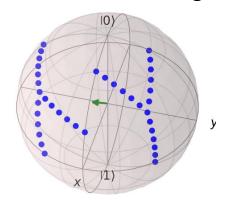


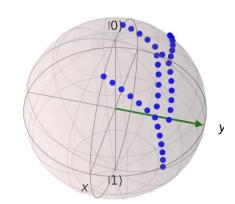
Implementing *H* gate

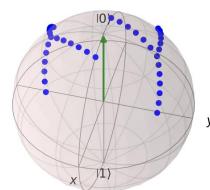
Also works: $H = R_y \left(\frac{\pi}{4}\right) Z R_y \left(-\frac{\pi}{4}\right)$

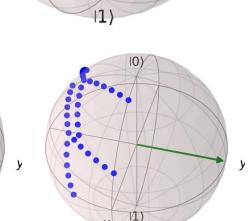
$$|\psi\rangle$$
 $R_y(\alpha)$ $R_z(\beta)$ $R_y(\gamma)$ $R_z(\beta)$ $R_y(\alpha)$

Example: Implementing Hadamard gate $R_{\hat{n}}(\pi)$, $\hat{n} = \frac{\hat{x} + \hat{z}}{\sqrt{2}}$









10)

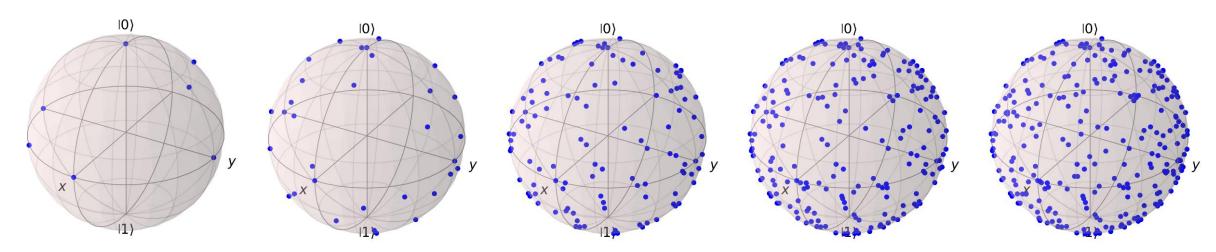
10

Universal for Single-Qubit Unitaries: H, T gates $T = \begin{bmatrix} 1 & 0 \\ 0 & \rho^{-i\pi/4} \end{bmatrix}$

For a single qubit, H, T gates are universal!

Synthesizing arbitrary z rotations using H, S, and T:

- Solovay-Kitaev: $\#T = O(\log^c(1/\epsilon)), c \approx 3$
- Ross-Selinger: $\#T = O(\log(1/\epsilon) + \log\log(1/\epsilon))$



After H,S,H,T,H,T gates.

11