

Quantum Compiling

PART B

CPSC 4470/5470

Introduction to Quantum Computing

Instructor: Prof. Yongshan Ding

Computer Science, Applied Physics, Yale Quantum Institute

Outline

1. **Single-Qubit Unitary**: *H*, *T* gates are universal. Visual evidence.

2. **Multi-Qubit Unitary**: *H*, *T*, *CNOT* gates are universal. Simple linear-algebraic proof.

Single-Qubit Unitary Gates

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}$$

$T = R_Z(\pi/4)$

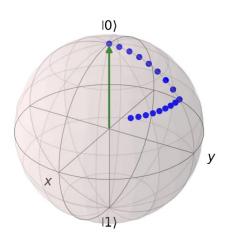
2D Rotation

 $R(\theta)$ y $R(\theta)$ x

Universal: $R(\theta)$ by irrational angle

3D Rotation

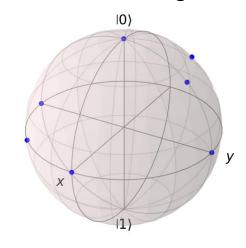
 $R_z(\beta) R_x(\alpha)$



 $H, R_Z(\theta)$

Discrete Gates

After H,S,H,T,H,T gates.



H,T

H, T gates are universal!

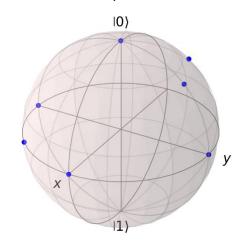
Single-Qubit Unitary

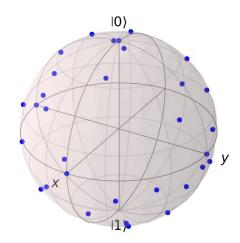
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}$$

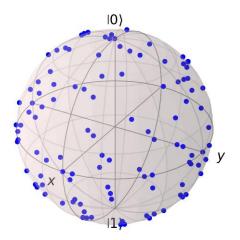
$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}$$

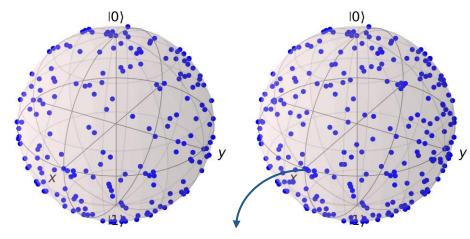
Synthesizing arbitrary z rotations using H, S, and T:

- Solovay-Kitaev: $\#T = O(\log^c(1/\epsilon)), c \approx 3$
- Ross-Selinger: $\#T = O(\log(1/\epsilon) + \log\log(1/\epsilon))$









After H,S,H,T,H,T gates.

$$R_z(\pi/128)|+\rangle$$
 (up to $\epsilon = 10^{-10}$)

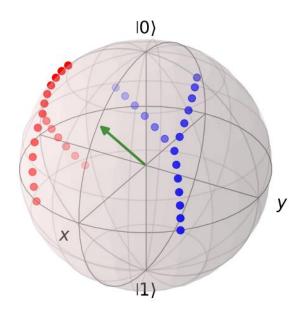
Hadamard Gate

Example:
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{X+Z}{\sqrt{2}}$$

Reflection about
$$|h\rangle = \cos \pi/8 |0\rangle + \sin \pi/8 |1\rangle$$

 $2|h\rangle\langle h| - I = H$

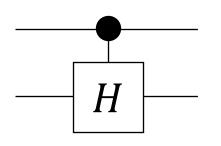
Rotation about axis
$$|h\rangle$$
 by 180°: $R_{\hat{n}}(\pi)$, where $\hat{n} = \frac{\hat{x} + \hat{z}}{\sqrt{2}}$ $R_{\hat{n}}(\pi) = e^{-\frac{i\pi}{2}\left(\frac{X+Z}{\sqrt{2}}\right)} = -iH$ (Up to global phase.)



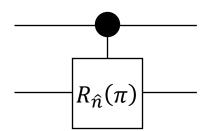
Two-Qubit Unitary: Controlled-H Gate

Recall: $R_{\hat{n}}(\pi) = -iH$ (same up to global phase)

What about c-H v.s. c- $R_{\hat{n}}(\pi)$ where $\hat{n} = \frac{\hat{x} + \hat{z}}{\sqrt{2}}$?



$$c-H = \begin{bmatrix} I & 0 \\ 0 & H \end{bmatrix}.$$
$$|0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes H$$

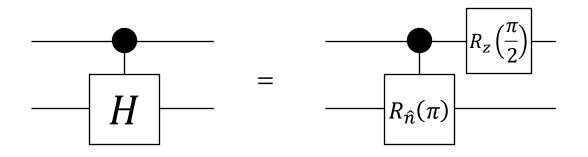


$$c-R_{\widehat{n}}(\pi) = \begin{bmatrix} I & 0 \\ 0 & -iH \end{bmatrix}.$$

 $|0\rangle\langle 0| \otimes I - i|1\rangle\langle 1| \otimes H$

Differ by a relative phase!

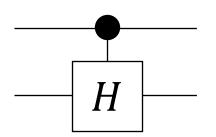
How to fix this? How to implement c-H using c- $R_{\hat{n}}(\pi)$?



$$\begin{bmatrix} I & 0 \\ 0 & H \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & iI \end{bmatrix} \cdot \begin{bmatrix} I & 0 \\ 0 & -iH \end{bmatrix}$$

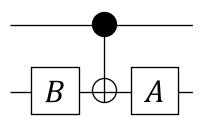
Controlled-H Gate from Single-Qubit Gates and CNOT

Example: controlled Hadamard (c-H) gate



$$c-H = \begin{bmatrix} I & 0 \\ 0 & H \end{bmatrix}.$$
$$|0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes H$$

Implement **c-H** with CX and single-qubit gates?



- If control==0:
 - AB is applied
- If control==1:
 - AXB is applied

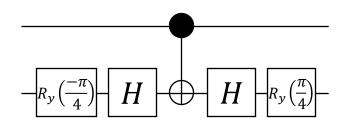
We want to find *A*, *B* such that:

- AB = I
- AXB = H

What are A and B?

$$H = R_{y} \left(\frac{\pi}{4}\right) Z R_{y} \left(-\frac{\pi}{4}\right)$$

$$H = R_y \left(\frac{\pi}{4}\right) HXHR_y \left(-\frac{\pi}{4}\right)$$



Changing Rotation Axis

$$XR_z(\theta)X = R_z(-\theta)$$
 $XR_y(\theta)X = R_y(-\theta)$

$$XR_{\nu}(\theta)X = R_{\nu}(-\theta)$$

$$XR_{x}(\theta)X = R_{x}(\theta)$$

$$HXH = Z$$

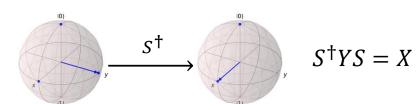
X axis

Y axis

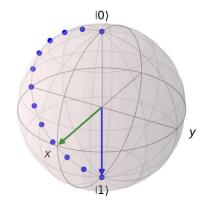
$$\hat{z} \xrightarrow{X} - \hat{z}$$

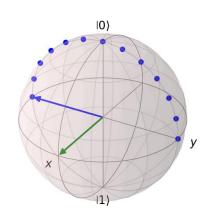
$$\hat{y} \xrightarrow{X} - \hat{y}$$

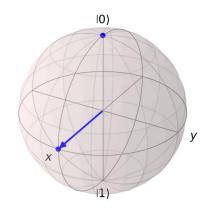
$$\hat{x} \xrightarrow{X} \hat{x}$$

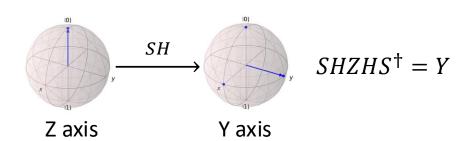


Z axis





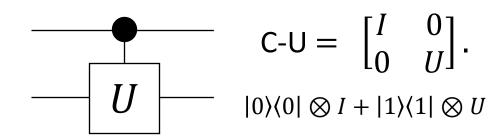




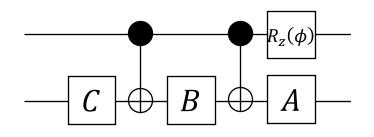
X axis

Controlled-U Gate from Single-Qubit Gates and CNOT

Controlled-U Gate ("quantum if-else"):



Implement c-U with CX and single-qubit gates?



Recipe: We can always find *A*, *B*, *C* such that:

- ABC = I
- $AXBXC = e^{-i\phi}U$

Take any single-qubit unitary:

$$e^{-i\phi}U = R_z(\gamma) R_x(\beta) R_z(\alpha)$$

Let
$$\theta_1 = \alpha + \frac{\pi}{2}$$
, $\theta_2 = \beta$, $\theta_3 = \gamma - \frac{\pi}{2}$,
$$e^{-i\phi}U = R_z(\theta_3) R_y(\theta_2) R_z(\theta_1)$$

Derive on board:

$$e^{-i\phi}U$$

$$= R_{z}(\theta_{3})R_{y}\left(\frac{\theta_{2}}{2}\right)XR_{y}\left(\frac{-\theta_{2}}{2}\right)R_{z}\left(\frac{-\theta_{1}}{2}\right)R_{z}\left(\frac{-\theta_{3}}{2}\right)XR_{z}\left(\frac{-\theta_{3}}{2}\right)R_{z}\left(\frac{\theta_{1}}{2}\right)$$

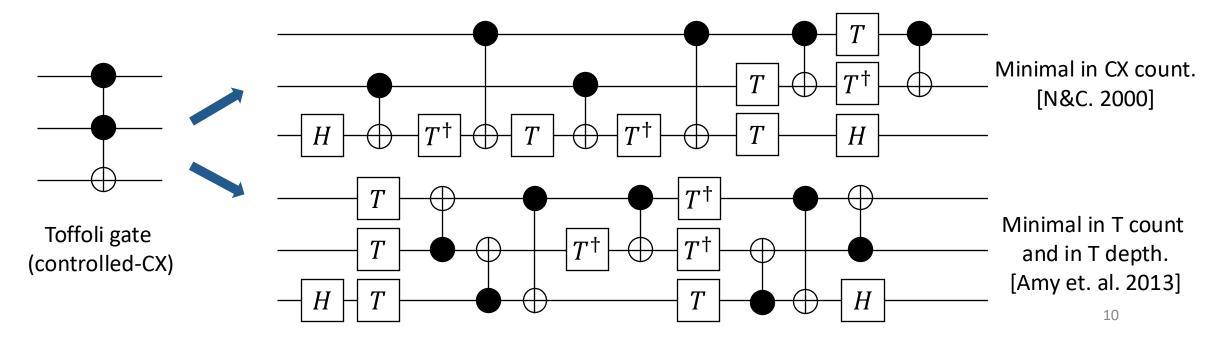
$$R_{z}\left(\frac{-\theta_{3}}{2}\right)$$

Multi-Qubit Unitary Synthesis

Computational Universality Theorem:

Any n-qubit unitary can be synthesized by single-qubit and two-qubit gates.

Example: Universal instruction set $\{H, T, CX\}$.



Proof Sketch for the Universality Theorem

Computational Universality Theorem:

Any n-qubit unitary can be synthesized by **single-qubit** and **two-qubit gates**.

Proof outline:

- Two-qubit gates are necessary. Why?
- Two-qubit gates are *sufficient*:
 - Any n-qubit unitary can be decomposed into a product of block-diagonal matrices.
 - Each block-diagonal matrices can be decomposed into a product of two-qubit gates.

Proof Outline

• Any *n*-qubit unitary can be decomposed into a product of $O(2^{2n})$ block-diagonal matrices.

Want to find:

$$U = W_{2}^{n} \cdot W_{2}^{n} \cdot \cdots \cdot W_{2} \cdot W_{1}$$
 where W_{i} as a product of $O(2^{n})$ block-diagonal matrices.

$$\Rightarrow W_{2^n} \cdot W_{2^n} \cdot \dots \cdot W_2 \cdot W_1 U^{-1} = I$$

<u>Derive on board</u>: Multiply U^{-1} by W matrices to obtain identity I column by column.

Proof Outline

• Each block-diagonal matrices can be decomposed into a product of two-qubit gates.

Want to find (Derive on board):

- $\Gamma_i(V)$ as a product of **permutations**, and **multi-controlled-V** ($\Lambda^{n-1}(V)$) gate.
- Permutations and $\Lambda^{n-1}(V)$ gates with two-qubit gates.

 $\Lambda^{n-1}(V)$ gate