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Outline

1. Single-Qubit Unitary: H, T gates are universal. Visual evidence.

2. Multi-Qubit Unitary: H, T, CNOT gates are universal. Simple linear-algebraic proof.



Single-Qubit Unitary Gates

T = Ry(n/4)

111 1 1 0 X
=% [1 —1]’ = [o e-i”/4] RS
2D Rotation 3D Rotation Discrete Gates
R(6) R,(B) R,(a) After H,S,H,T,H,T gates.
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Universal: R(0) by irrational angle
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H,T gates are universal!

Single-Qubit Unitary
Synthesizing arbitrary z rotations usingH, S, and T:

- i[l 1 ] _— [1 0 ] * Solovay-Kitaev: #T = 0(log€(1/¢€)),c = 3
T2l -1l g e-im/4 * Ross-Selinger: #T = 0(log(1/¢) + loglog(1/€))

ey
After H,S,H,T,H,T gates. R,(m/128)|+)

Gate se , - - (uptoe = 10719)

guence: H,S,H,T,H,T, (states in Fig (a)) H,T,H,T,H,T,H,TH,T,SHTHTH,THTS,HTH,TH, (states in Fig (b))
TH,TH,TSHTSHTHTHTHTHTSHTHTHTSHTSHTHTSHTSHTSHTHTHTHTSHTHTHTHTHTS,HTSHTHTS,HTHTS,HTS,H, (states in Fig (c))
T,S,H,T,S,H,THTS,HTSHTSHTSHTHTHTSHTS,HTSHTHTHTHTSHTHTSHTHTHTSHTHTHTHTSHTHTS,HTHTS,HTS,HTSHTH,T, (states in Fig (d))
H,T,H,TH,THTHTSHTHTSHTHTHTSMHTSHTHTHTS,HTS,HTSHTHTSHTHTHTHTS,HTS,HTS,H,S,S,S (states in Fig (e)) 4



Hadamard Gate

gLl 17]_x+z
Example.H—ﬁ[1 _1]—\/5

Reflection about |h) = cos/8|0) + sinm7/8]|1)
2|hXh| -1 =H

X+2Z

Rotation about axis |h) by 180°: R; (), where i = 7
_E(ﬂ)
Ri(m) =e 2\V2/ = —iH (Uptoglobal phase.)
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Two-Qubit Unitary: Controlled-H Gate

Recall: R;(m) = —iH (same up to global phase)

What about c-H v.s. c-Rj (1) where i = 3%2? How to fix this? How to implement c-H using c-R;(1)?
T
I 0 ? ? R, (5)—
H= [ ]
* cH= [, o _
— H — 100 ®+1X1®H — H — —|Ra(m
] _ [l 0 ] I 0] I 01 [I O
¥ erm= [ 9 I ERC R
—Ra(mM——  JoN0l @I —il1X1| ® H
Differ by a relative phase! 6



Controlled-H Gate from Single-Qubit Gates and CNOT

Example: controlled Hadamard (c-H) gate

’ c-H = [(I) 2]

—— H ——  10}0| @I+ [1X1|®H

Implement ¢c-H with CX and single-qubit gates?

* If control==0:
 ABis applied

| e If control==1:

« AXB is applied

We want to find A4, B such that:
e AB =1

« AXB=H

What are A and B?

H =Ry () 2Ry (~7)
H=R, (%) HXHR, (- %)




Changing Rotation Axis

I ) —— . HXH=17Z
XR,(6)X = R,(—6) XRy(H)X =R, (—0) XR,(8)X =R, (6) '
X axis Z axis
A X A ) 10)
X—X ; |
S ;
\ a - Stys=Xx
10) 75 /
//. ) )
/] Y axis X axis
y . SH
B —— (8 SHIHS'=Y

Z axis Y axis
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Controlled-U Gate from Single-Qubit Gates and CNOT

Controlled-U Gate (“quantum if-else”): Recipe: We can always find 4, B, C such that:
e ABC =1
I O « AXBXC =e U
C-U= :
0 U Take any single-qubit unitary:
— 1 U — o0 @1+ eu e U = R,(y) Ry(B) R,(a)
Implement c-U with CX and single-qubit gates? Let 0, = a + % 0, =pB,03=y— 7—;

e U = R,(65) R,(6,) R,(67)

R,(¢) Derive on board:
e” Py
— C H1 B A —0, —03 —03 0,4

o, (3 (20 (20 ) 202




Multi-Qubit Unitary Synthesis

Computational Universality Theorem:
Any n-qubit unitary can be synthesized by single-qubit and two-qubit gates.

Example: Universal instruction set {H, T, CX}.

® ® r T I
® / I I T LD Tt D Mml[r:lzgf 2C(;(O((:)(])unt.
¢ H T T HPAT =D T H
() \ T (M ' I T—|— ‘ a
- o D SR T S Sy
dgHdT I D T I T [Amy et. allc; 2013]




Proof Sketch for the Universality Theorem

Computational Universality Theorem:
Any n-qubit unitary can be synthesized by single-qubit and two-qubit gates.

Proof outline:
* Two-qubit gates are necessary. Why?
* Two-qubit gates are sufficient:
* Any n-qubit unitary can be decomposed into a product of block-diagonal matrices.

* Each block-diagonal matrices can be decomposed into a product of two-qubit gates.
Ii_q: (j — 1) x (j — 1) identity matrix

1
1 V:2 X 2 unitary matrix
v v
Block-diagonal matrix: I}-(V) = UOO 1701
o lj_ivi:(d—j+1) x(d—-j+1)
(1<j<d-1) 1 j
o identity matrix
11
1.



Proof Outline

* Any n-qubit unitary can be decomposed into a product of 0(2%™) block-diagonal matrices.

Want to find:

U=Woyn -Won---- W, -W;  where W asa product of 0(2") block-diagonal matrices.
= Wzn °W2n * ""WZ ’I/I/ll]_1 =I

Derive on board: Multiply U~! by W matrices to obtain identity I column by column.
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Proof Qutline

A 1(V) gate

* Each block-diagonal matrices can be decomposed into a product of two-qubit gates. ,

Want to find (Derive on board):

 T;(V) asa product of permutations, and multi-controlled-V (A"~ 1(V)) gate.
 Permutations and A" 1(V) gates with two-qubit gates.

|74
1 1
1 VV:2 X 2 unitary matrix ) 1
, _ Voo Vo1 n—1 _ 1
i) = Vio V11 AV) = .
(1<j<d-1) 1 1
: Voo Vo1
1- . V1o V1qd 13
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