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Abstract

We studied the quantum query complexities of the problems related to matrix
multiplications. We surveyed recent literature on the upper and lower bound of the
quantum algorithms that compute or verify the product of two n X n matrices under
ring, semi-ring, or Boolean semi-ring.

Then we present our partial results on the upper and lower bound of the Boolean
matrix product verification problem, from the perspectives of span programs and
polynomial method, respectively.
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Chapter 1

Introduction

1.1 Query Complexity

One reason to study query complexity is that it is simple to analyze. As the the internal structure
of an algorithm gets more and more sophisticated, it is often very hard to prove strong lower
bounds on the time complexity of the function that the algorithm solves. In the query model that
we will describe below, we only consider the accesses of the algorithm to the input string. This
simplification will thus allow us prove nontrivial lower bounds. For example the well-known
Q(nlogn) lower bound for any comparison-based sorting algorithm uses exactly the model of
query complexity.

Another reason that we are interested in the model of query complexity is that it is often the
same as the time complexity model, in the sense that there is often an efficient implementation of
the query function. In the query model, instead of accessing the input string x directly, it is done
through some black-box or some oracle function f(z). The query complexity of an algorithm
is simply the number of queries it makes to f. So an efficient implementation of the function f
would mean the query complexity of the algorithm being the same as its time complexity.

1.1.1 Deterministic

Consider the problem of computing a Boolean function f : {0,1}" — {0, 1} on an n-bit input
string z € {0, 1}". Then any deterministic algorithm can be generalized as below. The algorithm
follows some steps of computation (including reading input bits, or making decisions based
on the input) and returns some value as the result. We have therefore simplified the model of
computation to a deterministic decision tree, where each internal node represents reading an
index of the input string, and each leaf node is the output value. Starting from the root, we
decide a brach to go down, based on the input value we read at that node, until we reach the
leaf of this decision tree. It is, therefore, natural to consider the depth of the decision tree as the
complexity.

Formally, we call D(f) the deterministic query complexity of f, which is defined as the
minimal depth of a decision tree that evaluates f.

Example 1.1.1 (OR function). Let f : {0,1}" — {0,1} be f(x) = OR,(z) = |, x;. Then
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we have D(OR,,) = n.

The algorithm can deterministically output 1, as soon as it queried a bit that is 1. However, in
the worst case, it still have to query every bit. This is not too hard to see, suppose a deterministic
algorithm have queried all but one bit, and they all appear to be zero. Should it output O or 1?
In fact, an adversary can always give an input string such that the algorithm output an incorrect
result every time, because the correctness of the algorithm depends heavily on the last bit that it
chose to ignore.

1.1.2 Randomized

We can do the same simple generalization for randomized algorithms. The bounded-error ran-
domized query complexity R(f) of a function f is defined as the complexity of the best random-
ized algorithm that computes f(z) on input string z, with probability at least 2/3.
Example 1.1.2 (OR function). The best randomized algorithm needs only %n queries to the input
oracle, i.e. R(OR,) = 2n.

The algorithm chooses %n uniformly random input bits to examine. In the case that OR,,(z) =
0, it will always output 0. In the case that OR,,(x) = 1, we have probability at least 2/3 to find a
bit 1 in the %n chosen bits.

1.1.3 Quantum

The quantum query complexity Q(f) of a function f : {0,1}" — {0, 1} is defined as the query
complexity of the best quantum algorithm evaluating the function f(x), where “best” means
having the smallest query complexity over the worst possible input z € {0, 1}". So far, we have
been using Boolean total function consistently. In fact, the definitions on query complexity also
apply to functions that are not necessarily Boolean, and they don’t have to be total. In other
words, we can write the function in its most general form f : [¢(]* O D — [k]™ on input z € D.

To depict the model of quantum computation better, let’s take a look at what does an arbitrary
algorithm A actually looks like as a quantum circuits:

input

Uy U Ur—1 || | Uy [ p Output

anscilla {: :
Figure 1.1: A typical quantum circuit with query complexity 7', where I{;’s are arbitrary unitary
transformations and O=’s are queries to the input oracle.
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In this example, the quantum algorithm with query complexity 7' is modeled as a sequence
of T"+ 1 unitary transformations, interleaving with some number of queries to the input oracle.
Notice that we call the oracle 7' times, with some unitary transformations in between. Since
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all quantum operations are unitary, we can combine any number of intermediate operations and
make a giant unitary transformation. After all the transformations have been performed, we will
then read the output by measuring at the end.

We say that the quantum circuit evaluates f on input z € D when the circuit outputs result
f(z) with probability at least 2/3. The quantum query complexity QQ(f) of the algorithm is the
smallest number of queries the circuit made to evaluate f.

One very useful fact about quantum query complexity is the Boolean function composition.
Given a Boolean function g : D™*™ D D — {0, 1} and another function f : {0,1}" — &, then
we can denote f o g as the composed function, defined as follows:

(fog)x) = flg(z11, -, T1m)s - 9(Tnas- s Tnm)), (1.1)

where z € D C D", and x; ; € D forall i € [n],j € [m]. Then similar to the result D(f o g) =
D(f)D(g) in deterministic query complexity [Mon13]], we have, in quantum query complexity,
the following theorem:

Theorem 1.1.3 (Boolean function composition). If f and g are functions where the input of f is
Boolean and the output of g is Boolean, then Q(f o g) = O(Q(f)Q(g)).

1.2 Matrix Multiplication

Matrix Multiplication has been playing important roles in research studies across different fields,
for it is essential to many computational tasks, such as applications in linear systems of equations,
group theory, and representation theory. Yet, many basic questions that are related to matrix
multiplication still remain open, such as how efficiently can we compute or verify the product of
two matrices, and can we do better in quantum setting?

1.2.1 Background

In this section, we will survey recent literatures that focused on problems centered around matrix
multiplications. We will also looked at many variants of the original problem that arise in recent
studies. They are shown to be as important in many aspects.

Classically, we have gone a long way from the most straightforward O(n?) algorithm of
computing the product of two matrices, denoted MM. In 1969, Strassen first broke the O(n?)
algorithm and proposed a better O(n?#°7) time algorithm [Str69]. Since then, various techniques
that led to improvement in complexity have been discovered. Coppersmith and Winograd im-
proved it to O(n?7%) [CW87], and Williams to O(n?37%7) [Will2].

A common variant to the MM problem is the matrix product verification problem, denoted
MPV. Instead of computing the resulting multiplication, now we are given three matrices, A, B,
and C'. Our job is to check if C' = AB. Again classically, we have an algorithm from 1979,
when Freivalds published an optimal O(n?) bounded-error probabilistic algorithm [[Fre79].

Now we are interested in the same problems in the quantum setting. Before we do that,
let’s take a look at what are the common variants of the MM and MPV problem that have been
studied.



Related problems

Definition 1.2.1 (MM: Matrix Multiplication). Given input A, B € §"*". Compute AB.
Definition 1.2.2 (MPV: Matrix Product Verification). Given input A, B,C € S™*". Check if
C = AB.

Definition 1.2.3 (MvM: Matrix-vector Multiplication). Given input A € S™*" and v € S".
Compute Av.

Definition 1.2.4 (MvPV: Matrix-vector Product Verification). Given input A € S™*" and v, w €
S". Check if w = Av.

In some cases, we often simplify the problems by considering matrix A as part of the problem
specification, instead of an input. Then, the problems become:

Definition 1.2.5 (MM“: Matrix Multiplication). For some known matrix A € S™*", we are
given input B € S™*". Compute AB.

Definition 1.2.6 (MPV#: Matrix Product Verification). For some known matrix A € S™*", we
are given input B, C' € S"*". Check if C' = AB.

Definition 1.2.7 (MvM*: Matrix-vector Multiplication). For some known matrix A € §™*", we
are given input v € S". Compute Av.

Definition 1.2.8 (MvPV4: Matrix-vector Product Verification). For some known matrix A €
S"*" we are given input v, w € S". Check if w = Awv.

We are often interested in matrix multiplications under Boolean semi-ring. In particular:

Definition 1.2.9 (BMM“: Boolean Matrix Multiplication). For some known Boolean matrix
A € {0,1}™", we are given input B € {0, 1}"*". Compute AB.

Definition 1.2.10 (BMPV“: Boolean Matrix Product Verification). For some known Boolean
matrix A € {0,1}"*", we are given input B, C' € {0,1}"*". Check if C' = AB.

Definition 1.2.11 (BMvM*: Boolean Matrix-vector Multiplication). For some known Boolean
matrix A € {0,1}"*", we are given input v € {0, 1}". Compute Av.

Definition 1.2.12 (BvPV“: Boolean Matrix-vector Product Verification). For some known Boolean
matrix A € {0, 1}"*", we are given input v, w € {0, 1}". Check if w = Awv.

So in the above cases, the multiplication is replaced by a logical AND, and the addition is
replaced by a logical OR. For example, in BMPV problem, we want to check if

Cli,j] = \/ Ali. k] A B[k, j]. forall i, j € [n]. (1.2)
k=1

Known results

The reason that we are interested in so many variants of the problem is that they are shown to
be very useful in the reduction of other problems, like the triangle-detection problem [MSS07,
LMS13, [LG14] and the graph-collision problem [ABIO13|]. Here is a table of the complexities
of some of the selected problems:



Problem | Input Output Complexity
MM A, B AB O(n?)
MPV A,B,C | (AB=0)? |
MPV4 | B,C (AB=C)? | ©
MvPV4 | v, w (Av=w)? | ©
Q
Q
Q

BvPVA | v, w (Av=w)?
BMPV4 | B, C (AB=C)?
BMPV | A, B,C | (AB=C)?

Table 1.1: Quantum query complexities for several selected problems.

1.2.2 Verifying Boolean matrix product

In particular, we will describe the ideas behind the current upper and lower bound proof on the
BMPV problem. First, let’s take a closer look at the Boolean formula stated above in Equation
(1.2). Visually, the BMVP problem can be expressed as a constant-depth AND-OR formula as
follows:

n? branches

Figure 1.2: A constant-depth read-many AND-OR tree representing the BMPV problem.

Lower bound

Childs, Kimmel, and Kothari show that evaluating depth-2 Boolean circuits requires §2(n%35%)
queries [CKK12[], and how this problem related to the Boolean matrix product verification prob-
lem. First, notice that the Boolean vector product verification problem with matrix A known
(BvPV4) can be expressed essentially as a depth-2 circuits. In particular, on input vector v, we
want to verify Av = 1, where 1 is the all-one vector. Then the BvPV# problem becomes a
depth-2 circuit with n variables, n OR gates and 1 AND gate at the top.

BuPVA(v) = /n\ \n/ A; v (1.3)

i=1j=1

Thus it follows that Q(BvPV4) = Q(n%5%).



Theorem 1.2.13. For any known matrix A, Q(BM PV#) = Q(/nQ(BvPV4)) = Q(n0%)

Proof sketch. In particular, we describe the proof for the special case of BMPV where matrix
C' is all-one matrix, checking whether AB = C. We can therefore think of the problem as n
independent instances of the BvPV# problem: Let b; denote the i** column of the input matrix
B. Then

BMPVA(B) = /\ BuPV*(b,). (1.4)
In other words, it is a composition of logical AND with the BvPV# problem. Thus, we have
from Theorem that Q(BM PV#) = O(Q(AND,,)Q(BvPV4)) = Q(n!0%), O
Upper bound

Buhrman and Spalek [BS06] shows that the BMPV problem can be solved in O(n?/?) queries.
Notice that checking 1 entry of C' requires O(+/n) queries, so searching over n? entries for an
incorrect entry by Grover’s algorithm brings in another O(n) factor. More formally, we want to
check

Cij =\ Air A By, foralli, j € [n] (1.5)
k
And it requires at most O(n?/?) queries as described above.

In the following chapters, we will show several techniques on proving upper and lower query
complexities, and present our partial results on the Boolean matrix product verification problem.



Chapter 2

Lower Bound and the Polynomial Method

In this chapter, we describe a general technique for proving quantum query complexity lower
bounds, called the Polynomial Method. And then apply this method to obtain partial results for
the Boolean matrix product verification problem.

2.1 Polynomial Method

2.1.1 Quantum algorithms and polynomials

Recall from the previous section, we denote O, the oracle (unitary transformation) on the input
string z € [¢]". So quantumly, accessing the ' index of the input string z is given by

|3) [y) — 19) |y @ 2) (2.1)

Then we have the following:

Theorem 2.1.1. Let A be a quantum query algorithm making t queries to O, on input z € [(]".
1 1z;=ce[{
0 :otherwise
Zi.c of degree less than or equal to t.

If we denote z; . = , then the amplitude of any basis state is a polynomial in

Proof. We can show this by induction on ¢. Recall from the previous section, we had the model
of computation being a sequence of unitary transformations Uf;, each of which followed by an
query to the oracle O,. Suppose we start with all-zero inputs, then the base case is to apply
unitary transformation U, on the state |0)" [0)" |0)* (assuming we reserve n qubits for the input,
m qubits for the output, and a qubits for the anscilla.) We get the resulting state in its general
form:

YoodT D ali bl 2.2)

j€[n] be{0,1}™ ic{0,1}2

Since a; is a degree-0 polynomial, the statement holds for base case.
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Then assuming after £ steps of oracle transformation, we arrive at some state:

= P[5 b) 18 (2.3)

7,b,%

where each P;;;(Z) has degree at most k. Now, applying another oracle gate, we get,

O.10) =D Pinal2)15) b® 2) Ii) (2.4)
7,b,8
—Z[Zm s (2] 1) ) 1) @5)
jbi el

Thus the amplitudes after the application of O, is a polynomial of degree at most k+1. Therefore,
we have shown that for a ¢ query algorithm, the amplitude of any bases state is a polynomial in
w;,. of degree at most . O

Corollary 2.1.2. The acceptance probability of a t-query algorithm on input z € [(|" is a poly-
nomial in z; of degree at most 2t.

Proof. The probability of measuring some state |j) |b) [7) is Pjp P} ;. and both Pj;; and Pj, ;

are of degree at most ¢ by the theorem above. ]

Consider a Boolean function f : {0,1}" — {0, 1}, then we call P(z) of degree at most 2¢ a
approximating polynomial when we have |P(z) — f(z)| < ¢, forall z € {0, 1}" and some small
error bound e.

Now to prove a lower bound on the quantum query complexity of A4, it suffice to show a
lower bound on the approximating degree of the polynomial P.

2.1.2 Symmetrization

The idea behind the Polynomial Method is to simplified the analysis on quantum query com-
plexity by transforming it to the one on polynomials, since polynomials are well-studied objects.
However in many cases, bounding the degree of a multivariate polynomial is still rather compli-
cated. To get around with that, we often proceed by transforming the multivariate polynomial
into a univariate one. We call it the symmetrization step.

Let P be a polynomial in variables z = (z1,...,2,). Denote k = |z| the Hamming weight
of z, and let o be a permutation on n elements, so 0(2) = (2,1), Z6(2); - - - » Zo(n))- Define the
symmetrization polynomial (k) as follows:

Q) = B [P(:)] 26)

In other words, we take the average over all possible permutations o of z.

Lemma 2.1.3. Given any multilinear polynomial P, there exists a univariate polynomial () of
degree at most deg(P) such that Q(k) = E,=[P(2)], for all z € {0,1}".

8



Proof. Given a multilinear polynomial P, which looks like:
> es(I14). 2.7)
SCn] j€S

We take any of its monomial term [ [, ¢ 2;, where S C [n]. Let d = [S|. Then the expectation of
the monomial is,

k:£|]z| [Hz]} = kE\I,;| [zj =1,Vj € S} (2.8)
jES
(i)
= — (2.9)
(%)

—d)!

k1) (h—d+ D) ' ) (2.10)
n:

Thus the entire symmetrization polynomial () is a degree-d polynomial in k. ]

2.2 Polynomials on verifying Boolean matrix product

In this section, we present the partial results that we obtained from studying the potentials of the
polynomial method on verifying Boolean matrix products. In BMPV# problem, even though the
matrix A is considered to be part of the problem specification, instead of the problem input, we
observe that some matrices are easier to solve and some of them are very hard. So one motivation
of this section is to find matrix A such that the BMPV# problem is not trivial to solve, while still
possessing enough internal symmetry structure so that we can apply the polynomial method.

We start by considering the input A as the adjacency matrix of various graphs. One graph
that is particularly interesting is the Johnson graph.

2.2.1 Johnson Graph

Definition 2.2.1. The Johnson graph J(n, k) has (}) vertices, each of which has degree k(n—k),

so there are 22—k ("

5 k) edges.

Given the graph J(n, k), we know that its adjacency matrix is of dimension m x m, where
m= (7).

C(Eflsider the BvPV# problem: Az = y, where matrix A is known and x, y are input vectors
of length m. If we take A as the adjacency matrix of a Johnson graph, then pictorially, we are
essentially computing: for each z;, OR across the x values of all neighbors of 7, and compare the
disjunction with y;. As an example, this is .J (5, 2):

We have:

(Y12 = 13 V 14 V 15 V Tag V Tag V Ta5)

A (Y13 = T12 V 14 V T15 V T3 V T34 V T35)

A (Yas = 14 V Tog V X34 V 215 V To5 V T35)



Figure 2.1: The Johnson(5,2) graph, which is the complement to the Petersen graph.

n

There are m = ( k) number of equality tests, and each row has k(n — k) terms in the disjunction.
In order to use polynomial method, we proceed as follows: let f : {0,1}*" — {0,1} on
inputs x € {0,1}™, y € {0,1}™ be
e f(x,y)=1,if Ar =y
e f(x,y)=0,if Az #£ y
Suppose there is a t-query algorithm for f, then there exists a polynomial P of degree d = 2t,
such that

|P(x,y) — f(z,y)] < 5

Then, all we need to do is to find a symmetric polynomial () of the same degree as that of P, and
find a lower bound for d.

Suppose we are trying to symmetrize a polynomial of degree 2 containing the terms x12234, . . .
then swapping x 5734 will likely produce terms (12 + 234)% . .. in the resulting polynomial.

Trying to exploit the symmetry in a Johnson graph, I tried to re-label the graph. In our case,
swapping node ¢ with j means, at the same time:

e swapping the i*" row of A with the j* row, and the i*" col with the j col.

e swapping the i*" entry of x with the j* entry.
e swapping the ' entry of y with the j** entry.

Consider A as known. In other words, m = (Z) is fixed if we are going to consider the entire

matrix as the adj matrix of a graph. We don’t really have much freedom on choosing n, k. In
fact, if the matrix A is given, any parameters that specify the graph will a some constant, not
some variable. But it would still be interesting to find some graphs that are more general.

2.2.2 Generalized Kneser graph

Definition 2.2.2. A generalized Kneser graph KG(n, k, s) is the graph whose vertices are the
k-subset of an n-element set, two vertices being adjacent when they share s or fewer items.

10



Thus, for £ = 2, the Johnson graph J(n,2) is the complement of the generalized Kneser
graph KG(n,2,0). In KG(n, k,0), two vertices are adjacent if they represent disjoint sets.
For example, this is K G(5,2,0), which is isomorphic to Petersen graph:

Figure 2.2: The generalized Kneser(5, 2, 0) graph, which is isomorphic to the Petersen graph.
Therefore, for Petersen graph: We have KG/(5,2,0):

(Y12 = T34 V T35 V Ty5)

A (Y13 = Tog V T3 V Xy5)

A (Ya5 = x12 V 213 V T93)

n—k

©) = 10 number of equality tests, but each row has (",") = 3 terms in the

There are still m = ( "

disjunction now.

2.2.3 Symmetrization

1. Since relabeling doesn’t change the correctness of Ax = y, we can consider a permutation
0; j to be: swapping the i, j™ rows and cols of A, swapping the i'", j*" entries of z, and
swapping the i‘", j*" entries of 1, as shown earlier.

2. One can also apply symmetrization that does not change A (i.e. one way to swap the entries
in z, y while preserving the correctness of Az = y) We proceed by taking a closer look at
the boolean formula for BvPV4 on KG(5,2,0) (a.k.a. the Petersen graph), and we get:

(y=aVbVec)
S yNa)V(yAb)V(yAce)V (GAaNbAE)

Furthermore, in our case, the following:

(Y12 = T34 V X35 V Xy5)

11



becomes

T34 A Y12 A Y15 A Tos)
T35 A Y12 A Yra A Toy)
Ta5 A Y12 A Y13 A T23)
Yo N\ Tag N\ T35 A\ Ty5)

(
(
(
(

Notice that the top three rows cannot be true when the forth row is true. Also, there are
exactly 2(}) distinct sets of the form: (- A= A+ A ).

In simpler words, we are verifying that for each entry of y,
e If y; = 0, then we want to verify that its three neighbors z,, x;, z. are all zeroes.

e If y; = 1, then we want to verify that at least one of its three neighbors z,, xp, x. is
one.

Or alternatively, first negate the bits of y, denote it 3y'. Then
e If y; = 0, then we want to verify that its three neighbors z,, =, z. are all zeroes.
e If y. = 0, then we want to fail the case that its three neighbors z,, =y, . are all zeroes.

Therefore, it looks like, for each y;, we only need to look at its three neighbors in x. And
based on the observation above, we only verify/fail the case where y; and three x;’s are all
zeroes. So any permutation within the four items wouldn’t change the correctness.

12



Chapter 3

Upper Bound and the Span Program

In this Chapter, we will describe a technique of constructing Quantum query algorithms that
stems from the Adversary method of proving lower bound. We will show that the span program,
a linear-algebraic model of computation, is closely related to the dual adversary semi-definite
program. We will thereafter show its potential applications on verifying Boolean matrix products.

3.1 Span program

It might first seem surprising that the Adversary bound (a lower bound technique) is eventually
used to formulate query algorithms, and hence transforming into an upper bound proof. We will
describe this application of the adversary bound and its dual to help define the span program. The
primary technique we use is to define high level span programs to reproduce and improve the
best quantum query algorithms. Span programs have been shown to be as powerful as quantum
query algorithms [Rei09]]. It is therefore possible that, for any existing quantum query algorithm,
we construct its span program counterpart that runs as efficiently. The significant difference of
span programs from other models, on the other hand, provides us a new way of developing and
improving quantum algorithms. Since the span program is in nature a linear-algebraic model of
computation, it is natural to look at its applications on matrix multiplication and matrix product
verification.

3.1.1 Basic adversary bound

Let’s first take a look at a simple version of the adversary bound, defined by Ambainis [Amb02].
Consider a Boolean function f. The idea behind the basic adversary bound is to find a set Y of
YES-instances (i.e. from f~1(1)), and a set Z of NO-instances (i.e. from f~1(0)) that are very
hard to distinguish. More formally:
Theorem 3.1.1 ([HLSO7]). Let f : [(]* 2 D — {0, 1} be a Boolean function, and Y C f~*(1)
and Z C f~1(0), and a binary relation R CY X Z such that:

® Yy €Y there exists at least m different =z € Z such that (y,z) € R

® V2 € Z there exists at least m/ different y € Y such that (y,z) € R

* Yy €Y andi € [n), let {,; be the number of z € Z such that (y, z) € R and y; # z;

13



® V2 e Zandi € [n], let L, ; be the number of y € Y such that (y,z) € R and y; # z;
Then any quantum algorithms that evaluate function f requires (4 / ”;7"}') queries, where { =

max {,; and {' = max/, ;.
Example 3.1.2 (OR of ANDs). Given a AND-OR formula of n? variables (; j); je[n] in this form:

(g A A zig) V(2o Ao Azan) VooV (Zpa Ao e A Zpn) (3.1)
Then the formula requires €)(n) queries to evaluate.

Proof. LetY be the set of inputs with one disjunct evaluating to 1, while all other disjuncts being
0 due to exactly one variable equal to 0. Let Z be the set of inputs with all disjunct containing
exactly one variable equal to 0. By definition, f(Y) = 1, and f(Z) = 0. We denote that y € YV’
and z € Z being in the relation, if y and z differ in exactly one position.

We get m = m’ = nand ¢ = ¢ = 1. We have m = n because for each y € Y, we can
flip any bit in the disjuncts that evaluates to 1 to find the z € Z that is in relation, similarly for
m’ = n. By theorem above, we have the Q2(n) query complexity. O

3.1.2 General adversary bound

The basic adversary bound does not always gives the optimal lower bound. Thus a generaliza-
tion (the weighted adversary bound) was proposed, based on the important observation that the
distinguishability of the input pairs is different.

Definition 3.1.3. Let (I'; ,) ey .cz be a (real, symmetric) weight matrix for all pairs of input
yeYandze Z Weletl',, =0 when f(y) = f(2).

Analogous to the /mm/ term in the basic adversary bound, we denote ||I'|| as the maximum
of the absolute values of the eigenvalues of I'. We also define I'; as the matrix I' with those
entries where y; = z; zeroed out.

Definition 3.1.4. Let f : [(]* O D — [k] be a function. Then we define the adversary bound as:

I
ADV*(f) = max !

( ) I maxie[n] ||FZ||
Theorem 3.1.5 ([HLSO07]], [Rei09]). The quantum query complexity of a function f : [(]" D
D — [k] is ©(ADV=(f)). Hence the weighted adversary method gives an upper and lower
bound for the quantum query complexity of the function f.

(3.2)

3.1.3 Span program

The span program is a computational model of specifying Boolean functions [KWO93]. This
model has been discovered to have promising applications on various problems. Many span-
program-based quantum algorithms have recently been developed, for example for formulae
evaluation [Reil1al], matrix rank [Bell 1], subgraph-finding [Bel12]], k-distinctness problem [BL11],
and st-connectivity and claw detection [BR09]. We are interested in showing that span programs
are useful for other problems in quantum computation.

From the theorem above, we can therefore develop quantum algorithms based on the duality
of the adversary bound.
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Definition 3.1.6 (Span program [KW93]]). Given a decision function f : {0,1}" — {0,1}. We
define a span program P = {|7), {(Vio, Vi.1) }ic[n], Viree } as thus:

e A non-zero target vector |7) € R*

e n pairs (Vj, V;1) of sets of input vectors in R, for i € [n]

* A set V. of free input vectors in R

With this definition of a span program P, we can then evaluate P on any given input string
z € {0,1}™

o If z; = 0, mark vectors v € V; o as available and v € V; ; as unavailable

e If z; = 1, mark vectors v € V;; as available and v € V; ¢ as unavailable
The span program evaluates to 1 if and only if the target vector |7) lies within the span of the set
of available or free vectors, i.e. |7) € C(V () U Ve ).
Definition 3.1.7 (Witness size [RSO0S8]]). To measure the complexity of a span program, we use
the following notion of witness size:

e If P evaluates to 1 on input y, the positive witness for y is a pair of vectors (|wy) , |Wree))
such that V' (z) |wy) + Viree |Wiree) = |7). The size of the witness |w,) is defined as
|| |wy) ||, which is the squared length of the positive witness.

e If P evaluates to 0 on input z, the negative witness for z is any vector |w)) L C(V(z))
such that (w’|7) = 1. The size of the witness |w’) is defined as ||V |w) ||?, which is the
sum of the inner products of the negative witness with all unavailable input vectors.

If we denote size(w, ) to be the minimal size across all witness for input x, then the witness size
of the the span program P on domain D C {0, 1}" is given by:

wsize(P) = /wsize,(P)wsizeo(P) (3.3)
where
) = ) 34
wsizey(P) yer?gl%) size(wy) (3.4
wsizeg(P) = max size(w,) (3.5)
zef~1(0)

Then we have the following theorem that shows the close relation between span programs
and quantum query algorithms:
Theorem 3.1.8 ([Rei09], [Reillbl]). For any boolean function f : {0,1}" O D — {0,1}, if
P is a span program evaluating f, then there exists a quantum algorithm that evaluates f with
two-sided bounded error using O(wsize(P)) queries.

3.2 Span program on verifying Boolean matrix product

In this section, we present our partial results on the span program for the Boolean matrix product
verification problem. Inspired by the span program for st—connectivity problem [BRO9]. We
want to construct a graph, based on the input n x n Boolean matrices A, B, and C' using the
following rule:
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Create two dummy node, labeled as source s and target ¢.

Create two sets of n2 nodes, and label them a;j or ¢; j, forall ¢, j € [n].

If Afi, j] = 1, draw an edge from the source s to a; ;.

If Bli, j] = 1, draw edges from a;; to ¢y ;, for all k € [n].

If C[i, j| = 0, draw an edge from the source ¢; ; to the target ¢.

We have therefore constructed the graph, based on the input matrices A, B, and C. Then, to
solve the BMPYV problem using this graph, we have two goals:

¢ Verify that no nodes c; ; reachable from the sources are connected to the target ¢.

® Verify that all nodes c¢; ; not reachable from the sources are connected to the target ¢.
Let’s take a look at a concrete example. Given three Boolean matrices,

11
A=10 0
11

S = O

11
,B=1]0 1
10

_ o O

11
=110
11

O = O

Figure 3.1: The graph constructed for the span program for Boolean matrix product verification.
All nodes reachable from the source s are labelled in yellow, and all non-reachable in black.
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Then we can define more formally the span program, given input matrices A, B, and C' as
follows: The span program P uses the vector space with orthonormal basis

{Is) 16)} U laiz) - 4,5 € [} Udleiz) - 4,5 € [n]} (3.6)

The target vector is |7) = |s) — |t). There are the following available input vectors for the span
program P:

* |s) —|a; ) forall Afz,j] = 1.

* |ag;) — |cx,;) forall Bli, j| = 1,Vk € [n].

® |¢; ;) —|t) forall Cli, j] = 0.
Notice that, by definition, the span program will successfully verify all the zero entries of the
matrix C, because if any node ¢; ; that is reachable from the source s is connected to target ¢, say
we have a path s — a1 — ¢;1 — ¢, then the target vector |7) will fall within the span of the
available input vectors

7) = 1[s) = [t) = (Is) = lar2)) + (lar2) — lera) + (lern) — [£) (3.7
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Chapter 4

Future work

¢ In the lower bound analysis, there are many other family of graphs that we can further
investigate. Since the difficulty of the BMPV problem depends on the specification matrix
A, the goal is thus to find a graph whose adjacency matrix is not too easy to solve yet still
contains enough symmetry.

e To find the symmetrization polynomial ()(7), one possible direction is to look for a param-
eter ¢ that can specify some permutations that preserve the correctness.

¢ It might also be worth to look at the output-sensitive lower bound for the BMVP problem.
In particular, what is the lower bound of the problem when there is only one wrong entry
in matrix C.

¢ In the span program we developed, the 1-entries of the matrix C' are still yet to be verified.
Apparently, if we change of the rule of connecting ¢; ; with ¢ from Ci, j] = 0 to C[¢, j] =
1, then we can verify the one-entries. The potential research direction is then to combine
the two span programs to one that verifies all entries of the matrix C.
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